
Feline: Fast Elliptical Lines for Anisotropic Texture Mapping

Joel McCormack*, Ronald Perry†, Keith I. Farkas*, and Norman P. Jouppi*

Compaq Computer Corporation’s Western Research Laboratory and Mitsubishi Electric Research Laboratory

Abstract

Texture mapping using trilinearly filtered mip-mapped data
is efficient and looks much better than point-sampled or bilinearly
filtered data. But trilinear filtering represents the projection of a
pixel filter footprint from screen space into texture space as a
square, when in reality the footprint may be long and narrow.
Consequently, trilinear filtering severely blurs images on surfaces
angled obliquely away from the viewer.

This paper describes a new texture filtering technique called
Feline (for Fast Elliptical Lines). Like other recent hardware
anisotropic filtering algorithms, Feline uses an underlying space-
invariant (isotropic) filter with mip-mapped data, and so can be
built on top of an existing trilinear filtering engine. To texture a
pixel, it uses this space-invariant filter at several points along a
line in texture space, and combines the results. With a modest
increase in implementation complexity over earlier techniques,
Feline more accurately matches the desired projection of the pixel
filter in texture space, resulting in images with fewer aliasing
artifacts. Feline’s visual quality compares well against Elliptical
Weighted Average, the best software anisotropic texture filtering
algorithm known to date, but Feline requires much less setup
computation and far fewer cycles for texel fetches. Finally, since
it uses standard mip-maps, Feline requires minimal extensions to
standard 3D interfaces like OpenGL.
CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture – Graphics processors; I.3.7
[Computer Graphics]: Three-dimensional Graphics and Realism –
Color, shading, shadowing, and texture
Additional Keywords: texture mapping, anisotropic filtering,
space-variant filtering

1 INTRODUCTION

Ideally, computing a textured value for a pixel involves per-
spective projecting a filter from screen space (indexed by x and y
coordinates) into texture space (indexed by u and v coordinates),
then combining this with a reconstruction filter to create a unified
filter in texture space. Each texel inside the unified filter’s foot-
print is weighted according to the unified filter’s corresponding

value in screen space, the weighted samples are accumulated, and
the sum is divided by the filter’s volume in texture space. Figure
1, inspired by Lansdale [8], gives an intuitive view of this process.
A pixel filter is a “window” onto a portion of the texture map; the
window’s opacity at each point corresponds to the filter’s weight.
The grid represents a texture map; the shaded rectangle the screen.
We view an elliptical portion of the texture map through a round
pixel filter. (In degenerate cases, a circle projects to an arbitrary
conic section, but for our purposes an ellipse suffices.)

Figure 2 shows a typical pixel filter in screen space—a

Gaussian with weighting e–α (x2 + y2), truncated to zero beyond a
radius of one pixel, and with an α of 2. Tick marks on the x and y
axes are at one pixel intervals; the x-y grid is at 1/10 pixel intervals.
Figure 3 shows an exemplary perspective projection of this filter
into texture space, where the tick marks on the u and v axes are
spaced at one texel intervals, and the grid is at ½ texel intervals.
We normalize all texture filter volumes to one to allow direct
comparisons between graphs, then highly exaggerate the vertical
axis. Note the distorted filter profile: each contour line is an el-
lipse, but the ellipses representing lower sample weights are in-
creasingly offset from the filter center.

Mapping the texel positions in Figure 3 back into pixel posi-
tions in Figure 2 (let alone creating a unified filter), so that rela-
tive weights can then be applied to the texel values, is a gruesome
affair. Rather than using a perspective projection, Heckbert and
Greene [4][6] suggest using a locally parallel (affine) projection,

* Compaq Computer Corporation, Western Research Labo-
ratory, 250 University Avenue, Palo Alto, CA 94301.
[Joel.McCormack, Keith.Farkas, Norm.Jouppi]@compaq.com.

† Mitsubishi Electric Research Laboratories, Inc., Cambridge
Research Center, 201 Broadway, Cambridge, MA 02139.
perry@merl.com.

Figure 1: Viewing an elliptical texture area through a circular
pixel window.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sample
weight

y axis

x axis

Figure 2: A circular Gaussian filter in screen space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGGRAPH 99, Los Angeles, CA USA
Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

243

Supplemental Materials
Supplemental materials for this paper can be found in this directory.

as shown in Figure 4. This drastically simplifies computing the
footprint and weights of the projected filter. This simplification is
visually insignificant. The modest weight differences between
Figure 3 and Figure 4 are not detectable in images, and to get the
distortion shown in Figure 3 requires a nearly edge-on view of the
surface being texture mapped, in which all detail is lost anyway.

Our algorithm approximates the elliptical filter shown in
Figure 4 by performing several isotropic (e.g. trilinear, Gaussian)
filtering operations, called probes, along the major axis of the
ellipse. In comparison to other hardware anisotropic filtering
methods, Feline better approximates the elliptical filter by more
accurately determining the length of the line along which probes
should be placed, spacing probes at better intervals, widening
probes under certain conditions, and Gaussian weighting the
probe results. A more sophisticated algorithm, “Table Feline,”
described in [10], also better approximates the slope and length of
the ellipse’s major and minor axes. Both versions of Feline re-
quire just a few additional computations over previous algorithms.

In this paper, we first discuss previous work, including the
best efficient software technique, and shortcomings of recent
hardware anisotropic filtering techniques. We next describe the
desired computations for using several probes along a line, show
how to make these computations amenable to hardware, and dis-
cuss techniques to reduce the number of probes per pixel. Finally,
we present several pictures comparing the various methods of
filtering. More details about Feline can be found in [10].

2 PREVIOUS WORK

We first describe Elliptical Weighted Average (EWA), the
most efficient direct convolution method known for computing a
textured pixel. This provides a quality benchmark against which
to compare other techniques. (We do not describe previous soft-
ware efforts like [2] and [3], as we feel that EWA either super-
sedes these algorithms, or that they are so slow as to be in a dif-
ferent class.) We discuss trilinear filtering, which is popular but
blurry. We delve more deeply into Texram, a chip that performs
anisotropic filtering by repeated applications of an isotropic filter
along a line, and discuss its weaknesses. We briefly mention
other algorithms apparently similar to Texram, but which are not
described in sufficient detail to analyze.

2.1 Elliptical Weighted Average

Paul Heckbert’s and Ned Greene’s Elliptical Weighted Aver-
age (EWA) algorithm [4][6] exactly computes the size, shape, and

orientation of an elliptical filter like the one shown in Figure 4. If
the center of the filter in texture space is translated to (0, 0), then
the filter in texture space can be characterized as:

d2(u, v) = Au2 + Buv + Cv2

The value d2represents the distance squared from the center
of the pixel when the texel position is mapped back into screen
space. Thus, d2can index a table of weights that is unrelated to
the affine projection, but depends only upon the pixel filter.

EWA determines d2 for each texel in or near the elliptical
footprint. Texels inside the footprint (d2 ≤ 1) are sampled,
weighted, and accumulated. The result is divided by the sum of
the weights, which is the elliptical filter’s volume in texture space.

Given the partial derivatives ∂u/∂x, ∂v/∂x, ∂u/∂y, and ∂v/∂y,
which represent the rates of change of u and v in texture space
relative to changes in x and y in screen space, the biquadratic co-
efficients for computing d2 are:

Ann = (∂v/∂x) 2 + (∂v/∂y)2;

Bnn = –2 * (∂u/∂x * ∂v/∂x + ∂u/∂y * ∂v/∂y);
Cnn = (∂u/∂x)2 + (∂u/∂y)2;
F = Ann*Cnn – Bnn

2/4;
A = Ann/F;
B = Bnn/F;
C = Cnn/F;

Pixels that map to a large area in texture space can be han-
dled by using mip-maps [12], where each level of a mip-map is ½
the height and width of the previous level. Heckbert [6] suggests
sampling from a single mip-map level in which the minor radius
is between 1.5 and 3 texels, though he later implemented unpub-
lished code in which the minor radius is between 2 and 4 texels, in
order to avoid subtle artifacts.

Even using mip-maps, highly eccentric ellipses may encom-
pass an unacceptably large area. This area can be limited by
computing the ratio of the major radius to the minor radius, and if
this ratio is too large, widening the minor axis of the ellipse and
rederiving the coefficients A, B, and C. The combination of mip-
maps and ellipse widening allows EWA to compute a textured
pixel with a constant time bound.

Choosing a mip-map level and testing for very eccentric el-
lipses requires computing the major and minor radii of the ellipse:

root = sqrt((A – C)2 + B2);
A’ = (A + C – root)/2;
C’ = (A + C + root)/2;
majorRadius = sqrt(1/A’);
minorRadius = sqrt(1/C’);

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Sample
Weight

u axis

v axis

Figure 3: A perspective projection of a Gaussian filter into texture
space.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Sample
Weight

u axis

v axis

Figure 4: An affine projection of a Gaussian filter into texture
space.

244

Widening an ellipse requires seven multiplies, a square root,
an inverse root, and a divide. These setup computations, plus
logic to visit only texels in or near the ellipse and compute d2,
have thus far precluded hardware implementation of EWA.

The only complaint that can be leveled against EWA’s visual
quality is its choice of a Gaussian filter. Other filters produce
sharper images without introducing more aliasing artifacts (see
Wolberg [13] for an excellent discussion). However, these filters
have a radius of two or three pixels, which increases the work
required to compute a textured pixel by a factor of four or nine.
And as Lansdale [8] points out, none of these filters are as
mathematically tractable as the Gaussian for unifying the recon-
struction filter and projected pixel filter (warped prefilter).

2.2 Trilinear Filtering

Trilinear filtering emphasizes simplicity and efficiency at the
cost of visual quality. Rather than computing the shape of the
projected filter footprint, it uses a square filter in texture space.
By blending two 2 x 2 bilinear filters from adjacent mip-map
levels, trilinear filtering approximates a circular filter of an arbi-
trary size. Figure 5 shows a trilinear filter that (poorly) approxi-
mates the EWA filter shown in Figure 4. The axis tick marks are
spaced one texel apart, while the grid is spaced at ½ texel inter-
vals. Strictly speaking, because it blends two 2 x 2 bilinear fil-
tering operations, a trilinear filter samples a square area of 2n x 2n

texels. However, most of the filter volume resides inside a circle
with the nominal filter radius. In the 2D pictures below, we thus
show a trilinear filter’s footprint as a circle of the nominal radius.

A trilinear filter blurs or aliases textures applied to surfaces
that are obliquely angled away from the viewer. These artifacts
arise because the fixed shape of the trilinear filter poorly matches
the desired filter footprint, and so the trilinear filter samples data
outside the ellipse, doesn’t sample data inside the ellipse, or both.

2.3 Texram

Texram [11] provides higher visual quality than trilinear fil-
tering with less complexity than EWA. Texram uses a series of
trilinear filter probes along a line that approximates the length and
slope of the major axis of EWA’s elliptical footprint.

The Texram authors considered computation of the ellipse
parameters too costly for hardware, and so substituted simplified
approximations. These approximations underestimate the length
of the major axis of the ellipse, introducing aliasing; overestimate
the length of the minor axis, introducing blurring; and deviate
from the slope of the major axis, introducing yet more blurring

and aliasing. Nonetheless, with the exception of environment
mapping, these errors are visually insignificant under typical per-
spective projections, as discussed further in Section 3.2 below.

 Texram has other problems that manifest themselves as
aliasing artifacts. Its sampling line is usually much shorter than
the ellipse, and the trilinear probes can be spaced too far apart.
Texram always uses 2n equally weighted probes, which causes
poor high-frequency rejection along the major axis. These prob-
lems make Texram’s visual quality noticeably inferior to EWA.

Texram uses the four partial derivatives to create two vectors
in texture space: (∂u/∂x, ∂v/∂x) and (∂u/∂y, ∂v/∂y). The authors
claim to sample roughly the area inside the parallelogram formed
by these two vectors, by probing along a line that has the length
and slope of the longer of the two vectors. This line can deviate
from the slope of the major axis of EWA’s elliptical filter by as
much as 45°. This is not as bad as it sounds. The largest angular
errors are associated with nearly circular filters, which are rela-
tively insensitive to such errors in orientation.

Texram’s sampling line can be shorter than the true ellipse’s
major axis by nearly a factor of four. One factor of two comes
from Texram’s use of the length of the longer vector as the length
of the sample line. Note that if orthogonal vectors are plugged
into the ellipse equations in Section 2.1 above, the major radius is
the length of the longer vector, and so the ellipse’s major diameter
is actually twice the length of this vector. Texram’s error is ap-
parently due to an older paper by Paul Heckbert [5], in which he
suggested using a filter diameter that is really a filter radius.

Another factor of two comes from non-orthogonal vectors.
If the two vectors are nearly parallel and equal in length, the el-
liptical footprint is very narrow and has a major radius nearly
twice the length of either vector. Again, this is not as bad as it
sounds: typical perspective distortions yield a true ellipse radius
that is no larger than about 7% of the longer vector.

Texram approximates the radius of the minor axis of the el-
lipse by choosing the shortest of the two parallelogram side vec-
tors and the two parallelogram diagonals (∂u/∂x + ∂u/∂y, ∂v/∂x +
∂v/∂y) and (∂u/∂x – ∂u/∂y, ∂v/∂x – ∂v/∂y). If the side vectors are
nearly parallel and the shorter is half the length of the longer, this
approximation can be too wide by an arbitrarily large factor.

One of the Texram authors was unsure which values round
up or down in the division that computes the number of probes.
We have assumed values in the half-open interval [1.0 to 1.5)
round to one probe, values in [1.5 to 3) round to two probes, val-
ues in [3 to 6) round to four probes, etc. Texram does not adjust
the probe diameter when it rounds down (as discussed in Section
3.1 below), and so can space probes too far apart. Rather than the
smoothly sloped “shield volcano” filter of EWA, Texram can use
a “mountain range” filter with individual peaks. These peaks beat
against repeated texture patterns to create phantom patterns.

Figure 6 shows an extreme example of these errors, in which
(∂u/∂x, ∂v/∂x) is (13, 0) and (∂u/∂y, ∂v/∂y) is (12, 5). The area
sampled by EWA is shown as the large heavily outlined ellipse,
while Texram’s trilinear filter footprints are shown as circles.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Sample
weight

u axis

v axis

Figure 5: A trilinear filter approximation to Figure 4.

"Bounding"
paral le logram

Texram area
actual ly f i l tered

EWA's el l ipt ical
footprint

Sampl in g
l ine L

Figure 6: Texram area sampled vs. EWA.

245

2.4 Other Hardware Algorithms

Microsoft’s Talisman [1] uses a filtering algorithm “in the
spirit of” Texram. Few details are provided, but the aliasing evi-
dent in the examples suggest that they may have inherited some or
all of Texram’s problems. Evans & Sutherland holds U.S Patent
#5,651,104 for using space-invariant probes along a line. The
patent doesn’t describe how to compute the probe line, but the
diagrams imply a line that is at most a single pixel in length in
screen space, which is once again so short that it will produce
visible aliasing artifacts.

3 THE FELINE ALGORITHM

Like Texram, Feline uses several isotropic probes along a
line L to implement an anisotropic filter. However, we compute a
more appropriate length for the sampling line L, allow the number
of probes to be any integer, don’t space probes too far apart, and
weight the probes using a Gaussian curve. Feline achieves higher
visual quality than Texram with little additional logic.

We first describe the desired computations to yield the loca-
tions and weights for a series of probe points along a line. We
then describe “Simple Feline,” which inherits Texram’s approxi-
mations of the major and minor radii, after which it implements
the desired computations in a fashion suitable for hardware. Un-
der highly distorted perspective projections, which may occur
when environment mapping, Simple Feline’s major and minor
radii approximations result in blurring. “Table Feline,” described
in [10], uses a table to compute the ellipse axes more accurately.
We conclude with techniques to reduce the number of probes,
without substantially decreasing Feline’s image quality.

3.1 The Desired Computations

The combination of multiple isotropic probes should closely
match the shape of the EWA filter. Thus, the probe points should
occur along the major axis of the ellipse, the probes should be
Gaussian weighted, and the probe filter width should be equal to
the minor axis of the ellipse.

(Theoretically, the probe filter width should be related to the
width of the ellipse at each probe position. We initially did not
investigate this because we didn’t know how to optimize the
trade-off between the probe diameter, probe weighting, probe
spacing, and the number of probes. After implementing constant
diameter probes, we saw no reason to pursue variable diameter
probes. The “improvement” was unlikely to be visible, but would
significantly increase the number of probes due to closer spacing
of small probes near the ends of the ellipse.)

We compute majorRadius and minorRadius as in Section 2.1
above, and then the angle theta of the major axis:

theta = arctan(B/(A-C))/2;
// If theta is angle of minor axis, make it angle of major axis
 if (A > C) theta = theta + π/2;

If minorRadius is less than one pixel (that is, we are magni-
fying along the minor axis, and possibly along the major axis), the
appropriate radii should be widened—there is no point in making
several probes to nearly identical locations. Heckbert’s Master’s
Thesis [6] elegantly addresses this situation. He unifies the recon-
struction and warped prefilter by using the following computa-
tions for A and C rather than the ones shown in Section 2.1 above:

Ann = (∂v/∂x) 2 + (∂v/∂y)2 + 1;
Cnn = (∂u/∂x)2 + (∂u/∂y)2 + 1;

This makes the filter radius sqrt(2) texels for a one-to-one
mapping of texels into pixels. (The radius approaches one texel
as magnification increases.) While theoretically superior, this
wider filter blurs more than the radius one trilinear filter conven-
tionally used for unity mappings and magnifications. In order to
match this convention, and to make hardware implementation
feasible, we clamp the radii to a minimum of one texel:

minorRadius = max(minorRadius, 1);
majorRadius = max(majorRadius, 1);

The space-invariant probes along the major axis have a
nominal radius equal to minorRadius, and so the distance between
probes should also be minorRadius. The end probes should be set
in from the ellipse by a distance of minorRadius as well, so that
they don’t sample data off the ends of the ellipse. Therefore, the
number of probes we’d like (fProbes), and its integer counterpart
(iProbes), are derived from the ratio of the major and minor radii
of the ellipse as follows:

fProbes = 2*(majorRadius/minorRadius) – 1;
iProbes = floor(fProbes + 0.5);
if (iProbes > maxProbes) iProbes = maxProbes;

To guarantee that texturing a pixel occurs in a bounded time,
we clamp iProbes to a programmable value maxProbes. An ap-
plication can use a small degree of anisotropy at high frame rates,
and then allow more eccentric filters for higher visual quality
when motion ceases.

When iProbes > fProbes, because fProbes is rounded up, we
space probes closer than their radius, rather than blur the image by
sampling data off the ends of the ellipse.

When iProbes < fProbes, either because fProbes is rounded
down, or because iProbes is clamped, the ellipse will be probed at
fewer points than desired. Spacing the probes farther apart or
shortening the line L may cause aliasing artifacts. Instead, we
blur the image by increasing minorRadius to widen the ellipse.
Increasing minorRadius increases the level of detail and thus the
nominal radius of the probe filter.

if (iProbes < fProbes)
minorRadius = 2*majorRadius / (iProbes+1);

levelOfDetail = log2(minorRadius);

Analogous to clamping minorRadius and majorRadius, we
use a single probe in the smallest 1 x 1 mip-map, which reduces
cycles spent displaying a repeated texture in the distance. We
don’t bother with a similar optimization for the 2 x 2 or 4 x 4 mip-
maps. Consider the worst 2 x 2 case, in which a checkerboard is
mirror repeated, and an ellipse with a minorRadius of 1 is cen-
tered at a corner of the texture map. Figure 7 depicts this situa-
tion, where the thin lines delineate texels, and the thick lines de-
lineate the (repeated) 2 x 2 mip-map. The circle on the left uses
one probe to compute an all-white pixel. The ellipse on the right
uses 6 probes to compute the darkest possible pixel of 52% white,
48% shaded. (The white texels apparently inside the ends of the
ellipse don’t contribute to the pixel’s color, as only texel centers
are sampled.) Since longer ellipses converge so slowly to an in-
termediate color, we restrict ourselves to the trivial adjustment:

Figure 7: Ellipses in a 2 x 2 texture map oscillate around a blend
of the two colors as eccentricity increases.

246

if (levelOfDetail > texture.maxLevelOfDetail) {
levelOfDetail = texture.maxLevelOfDetail;
iProbes = 1;

}

We compute the stepping vector (∆u, ∆v), which is the dis-
tance between each probe point along the line, as follows:

lineLength = 2*(majorRadius – minorRadius);
∆u = cos(theta) * lineLength / (iProbes – 1);
∆v = sin(theta) * lineLength / (iProbes – 1);

(The stepping vector is irrelevant if iProbes is 1.) The sam-
ple points are distributed symmetrically about the midpoint
(um, vm) of the sampling line L in the pattern:

(un, vn) = (um, vm) + n/2 * (∆u, ∆v)

where n = ±1, ±3, ±5, … if iProbes is even, as shown in Figure 8,
and n = 0, ±2, ±4, … if iProbes is odd, as shown in Figure 9.

We apply a Gaussian weight to each probe n by computing
the distance squared of the probe from the center of the pixel filter
in screen space, then exponentiating:

d = n/2 * sqrt(∆u2 + ∆v2) / majorRadius;
d2 = n2/4 * (∆u2 + ∆v2) / majorRadius2;
relativeWeight = e-α * d2

;

Finally, we divide the accumulated probe results by the sum
of all the weights applied.

3.2 Implementing Simple Feline

Simple Feline implements the above computations, except it
uses Texram’s ellipse axes approximations rather than computing
the exact values. We use the longer of the two vectors (∂u/∂x,
∂v/∂x) and (∂u/∂y, ∂v/∂y) as the major radius, and the shortest of
those and the two diagonals (∂u/∂x + ∂u/∂y, ∂v/∂x + ∂v/∂y) and
(∂u/∂x – ∂u/∂y, ∂v/∂x – ∂v/∂y) as the minor radius length.

We were surprised that these approximations work essen-
tially as well as the exact values under typical perspective projec-
tions. We discovered that the two vectors (∂u/∂x, ∂v/∂x) and
(∂u/∂y, ∂v/∂y) are more or less orthogonal under typical perspec-
tive distortions. In the images shown below, the angle between
the two are in the range 90° ± 30°, and the most extreme angles
occur with very unequal vector lengths. The simple approxima-
tions are tolerably close to the true values under these conditions.

We use a two-part linear approximation for the vector length
square root. Without loss of generality, for a vector (a, b) assume
that a, b > 0 and a > b. The following function is within ±1.2% of
the true length sqrt(a2 + b2):

if (b < 3a/8) return a + 5b/32
else return 109a/128 + 35b/64

We do not compute the stepping vector with trigonometric
functions, but instead scale the longer vector directly. Call the
longer vector components (majorU, majorV). Either this vector
describes majorRadius, or else iProbes is one and the stepping
vector is irrelevant. By substituting majorU/majorRadius for
cosine, and majorV/majorRadius for sine, we get:

r = minorRadius / majorRadius;
i = oneOverNMinusOneTable[iProbes];
∆u = 2*(majorU – majorU*r) * i;
∆v = 2*(majorV – majorV*r) * i;

Finally, we use a triangularish two-dimensional weight table
to avoid computing and exponentiating d2. We use the smaller of
fProbes truncated to a couple fractional bits, or iProbes, as the
weight table’s row index, so that each row of weights applies to a
small range of ellipses. The column index is floor((abs(n)+1)/2).
By dividing each of the relative weights in a row by the sum of
the weights for that row, the weights in each row sum to 1. Con-
sequently, we need not normalize the final accumulated result.
Note that if iProbes is odd, the W0 entry in a row should count
half as much as the other entries when computing the sum: it is
used once, while the other weights are used twice.

Most of the computations specific to Feline can use group
scaled numbers with a precision of 8 bits. (The center point
(um, vm) must still be computed with high precision, of course.)
Small errors cause sampling along a line at a slightly different
angle, and at intervals that are slightly smaller or larger than de-
sired. These arithmetic errors are negligible compared to the in-
accuracies caused by the gross approximations to the ellipse axes.

3.3 Increasing Efficiency

We investigated how far we could “push the envelope” to re-
duce the number of probes by shortening and widening the ellipse,
and by spreading probe points farther apart than their radius.

We can shorten the ellipse using a lengthFactor <= 1:

majorRadius = max(majorRadius * lengthFactor,
 minorRadius);

majorU *= lengthFactor;
majorV *= lengthFactor;

The code in Section 3.1 proportionately widens an ellipse
more when rounding down a small value of fProbes than a large
one. We can instead compute iProbes so that for all values of
fProbes, we widen the ellipse to at most a blurFactor times the
minor radius. We also allow stretching the distance between
probe positions by up to aliasFactor times the probe filter radius:

f = 1 / (blurFactor * aliasFactor);
iProbes = ceiling(f * 2 * (majorRadius/minorRadius)) – 1;

If iProbes is not clamped to maxProbes, we blur (widen the
ellipse) by increasing minorRadius by up to blurFactor:

n = -3 n = -1

n = +1

n = +3

mid-
point

Figure 8: Positioning an even number of probes.

n = -4
n = -2

n = +2
n = +4

n = 0

Figure 9: Positioning an odd number of probes.

247

minorRadius = min(2*majorRadius / (iProbes+1),
minorRadius * blurFactor)

 The computations of ∆u and ∆v automatically make up any
remaining difference between iProbes and fProbes by increasing
probe spacing. If iProbes is clamped, we blur (in excess of blur-
Factor) to the point where the computations of ∆u and ∆v will
increase probe spacing by aliasFactor:

minorRadius = 2 * majorRadius /
((iProbes+1) * aliasFactor);

We chose two sets of parameter values
empirically. The “high-quality” set
(lengthFactor 0.97, blurFactor 1.16, alias-
Factor 1.15) reduces the number of probes
by 24% with almost no degradation of im-
age quality, compared to the constant
rounding of Section 3.1. The “high-
efficiency” set (lengthFactor 0.97, blur-
Factor 1.31, aliasFactor 1.36) uses the
same number of probes as Texram to pro-
vide images that contain more artifacts than
the “high quality” setting, but are nonethe-
less much better than Texram.

The high-efficiency aliasFactor cre-
ates large valleys between the peaks of a
trilinear filter, especially along diagonal
probe lines. We obtained slightly better
images by changing the probe filter from a
bilinear filter on each of the two adjacent
mip-map levels to a Gaussian filter trun-
cated to a 2 x 2 square. We then linearly
combine the two Gaussian results using the
fractional bits of the level of detail. (This
also makes single-probe magnifications look
better.) A hardware trilinear filter tree is
easily adapted to implement Gaussian rather
than bilinear weightings [9]. Four copies of
a small one-dimensional table map the frac-
tional bits of u and v on each of the two
mip-maps to Gaussian weights.

4 COMPARISONS WITH
PREVIOUS WORK

Figure 10 through Figure 14 show
various algorithms generating a pattern of
curved lines. Figure 15 through Figure 18
show a floor of bricks, and Figure 19
through Figure 22 show magnified texture-
mapped text. Texram images use the origi-
nal algorithm; correcting the errors de-
scribed in Section 2.3 above results in many
more probes and degrades visual quality!
Aliasing artifacts mostly remain, and im-
ages significantly blur due to the equal
weighting of probes. Simple Feline images
use parameters as described in Section 3.3
above, and a mip-mapped Gaussian for the
probe filter. Mip-mapped EWA samples
from a mip-map level where the minor
radius is between 1.5 and 3 texels; this
looks identical to a radius between 2 and 4,
but samples about half as many texels.
Trilinear, Texram, and Feline images use a
radius 3 Lanczos filter to create mip-maps.

EWA images use a box filter: the Lanczos filter causes “bluriness
banding” artifacts when EWA jumps from using a large ellipse in
one mip-map to using a small ellipse in the next.higher mip-map.

Feline with high-quality parameters generates images com-
parable to EWA, but with slightly stronger Moiré patterns. The
only exception occurs if a box filter is used to create mip-maps for
textures like checkerboards. Because the base texture and all its

Figure 10: Trilinear paints curved lines with blurring.

Figure 11: “High-efficiency” Simple Feline paints curved lines with fewer artifacts.

Figure 12: Texram paints curved lines with strong Moiré artifacts.

Figure 13: “High-quality” Simple Feline paints curved lines with few artifacts.

Figure 14: Mip-mapped EWA paints curved lines with few artifacts.

248

mip-maps then contain illegally high frequencies
that Feline’s relatively narrow filter cannot re-
move, Feline displays much stronger Moiré arti-
facts than EWA. Using a better filter, such as the
Lanczos, to create the mip-maps makes Feline
display fewer artifacts than EWA—Feline is more
likely to use filtered mip-mapped data, rather than
the unfiltered base texture.

Both sets of Feline images are much sharper,
and exhibit far fewer Moiré artifacts, than those
generated by trilinear filtering. Though not
shown here, we note that high-efficiency Feline
and Texram are both subject to “probe banding”
on repeated textures: some images show a visible
line where the number of probes increases from
one value to another.

Texram images sometimes seem a little
sharper than Feline images, but then, aliased im-
ages always seem sharper than antialiased images.
Repeated texture patterns amplify Texram’s
aliasing problems to create strong Moiré patterns,
as shown in the curved lines and bricks images.
These patterns are even more disturbing in mov-
ing images, where they shimmer across the sur-
face. Texram’s aliasing is more subtle in non-
repeated textures, such as text. Comparing the
high-efficiency Feline images to Texram is espe-
cially interesting: both use the same number of
probes, but the Feline images exhibit far fewer
artifacts. Experiments show that Feline’s quality
is due to the use of a Gaussian probe filter, the
Gaussian weighting of probe results, and the end-
to-end coverage of the ellipse.

Higher visual quality comes at increased
computational cost for setup and sampling. But
much of Feline’s setup can be performed in par-
allel with the perspective divide pipeline, and so
increases pipeline length over Texram by only a
few stages. Feline’s setup costs are substantially
smaller than mip-mapped EWA’s.

Both Feline and Texram access eight texels
each probe, and probes overlap substantially (especially in the
smaller of the two mip-maps). A texel cache [7][9] eliminates
most redundant memory fetches. We assume these algorithms
can perform one probe per cycle; higher performance requires
duplicating large portions (100k to 200k gates) of the texture
mapping logic.

Mip-mapped EWA doesn’t fetch texels more than once per
pixel and samples a substantially larger area. “Optimistic EWA”

naively assumes we can sample 8 texels/cycle on all but the last
cycle for each ellipse. “Realistic EWA” assumes that hardware
traverses the ellipse using a 4 x 2 texel “stamp” for u-major ellip-
ses, and a 2 x 4 stamp for v-major ellipses. Thus, each cycle sev-
eral of the stamp’s texels usually lie outside the ellipse.

Figure 23 shows how many cycles/pixel each algorithm uses
for different viewing angles of one exemplary surface. At 0°, the
surface normal is parallel to the viewing angle, and mip-mapped

Figure 15: Texram paints bricks with herringbone artifacts.

Figure 16: “High-efficiency” Simple Feline paints bricks with fewer artifacts.

Figure 17: “High-quality” Simple Feline paints bricks with few artifacts.

Figure 18: Mip-mapped EWA paints bricks with fewest artifacts.

Figure 19: Trilinear paints blurry text.

Figure 20: Texram paints text with stairstepping.

Figure 21: “High-efficiency” Simple Feline paints smooth text.

Figure 22: Mip-mapped EWA paints smooth text.

249

EWA samples the same size circle for each pixel. We made this
circle’s area the same as would be obtained by averaging results
from randomly distributed viewing distances. This graph should
be interpreted like EPA gas mileage numbers: it is useful for rela-
tive comparisons, but mileage will vary depending upon position
on the screen, perspective distortion, etc.

Finally, note that if a scene uses multiple textures per sur-
face, anisotropic texture mapping performance doesn’t always
slow down by these cycles/pixel ratios. For example, illumination
maps tend to be small, so are usually magnified [7], which takes a
single probe. They also tend to be blurry (that is, contain mostly
low frequencies), so even when minified, an application might
limit illumination mapping to one or two probes per pixel.

5 CONCLUSIONS

Feline provides nearly the visual quality of EWA, but with
much simpler setup and texel visiting logic, and many fewer cy-
cles per textured pixel. Feline provides better image quality than
Texram, especially for repeated textures, even when limited to use
the same number of probes. Feline requires somewhat more setup
and texel weighting logic than Texram, but this cost is small com-
pared to the increase in visual quality. Feline can be built on top
of an existing trilinear filter implementation; for better results, the
trilinear filter can be converted to a mip-mapped Gaussian at little
cost. Since several aspects of Feline are parameterized, Feline
can gracefully degrade image quality in order to keep frame rates
high during movement. This degradation might accentuate
aliasing for irregular textures, in order to preserve image sharp-
ness, and accentuate blurring for repeated regular textures, in
order to avoid Moiré artifacts.

In the Sep/Oct 1998 issue of IEEE Computer Graphics and
Applications, Jim Blinn wrote in his column that “No one will
ever figure out how to quickly render legible antialiased text in
perspective. Textures in perspective will always be either too
fuzzy or too jaggy. No one will ever build texture-mapping
hardware that uses a 4x4 interpolation kernel or anisotropic fil-
tering.” Feline is simple enough to implement, yet of high enough
visual quality, to prove him at least partially wrong.

6 ACKNOWLEDGEMENTS

Thanks to Paul Heckbert for answering questions and for
providing us with the EWA source code, and to Gunter Knittel for
answering questions about Texram.

References

[1] Anthony C. Barkans. High Quality Rendering Using the
Talisman Architecture. Proceedings of the 1997
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pages 79-88. ACM, August 1997. ISBN 0-
89791-961-0.

[2] Frank C. Crow. Summed-Area Tables for Texture Map-
ping. In Hank Christiansen, editor, Computer Graphics
(SIGGRAPH 84 Conference Proceedings), volume 18,
pages 207-212. ACM, July 1984.

[3] Alain Fournier & Eugene Fiume. Constant-Time Filtering
with Space-Variant Kernels. In Richard J. Beach, editor,
Computer Graphics (SIGGRAPH 88 Conference Proceed-
ings), volume 22, pages 229-238. ACM SIGGRAPH,
Addison-Wesley, August 1988. ISBN 0-89791-275-6.

[4] Ned Greene & Paul Heckbert. Creating Raster Omnimax
Images from Multiple Perspective Views Using the Ellipti-
cal Weighted Average Filter. IEEE Computer Graphics
and Applications, 6(6):21-27, June 1986.

[5] Paul S. Heckbert. Texture Mapping Polygons in Perspec-
tive, Technical Memo #13, NY Inst. Tech. Computer
Graphics Lab, April 1983.

[6] Paul S. Heckbert. Fundamentals of Texture Mapping and
Image Warping (Masters Thesis), Report No. UCB/CSD
89/516, Computer Science Division, University of Califor-
nia, Berkeley, June 1989.

[7] Homan Igehy, Matthew Eldridge, Kekoa Proudfoot. Pre-
fetching in a Texture Cache Architecture. Proceedings of
the 1998 EUROGRAPHICS/SIGGRAPH Workshop on
Graphics Hardware, pp. 133-142. ACM, August 1998.
ISBN 0-89791-1-58113-097-x.

[8] Robert C. Landsdale. Texture Mapping and Resampling
for Computer Graphics (Masters Thesis), Department of
Electrical Engineering, University of Toronto, Toronto,
Canada, January 1991, available at ftp://dgp.toronto.edu/
pub/lansd/.

[9] Joel McCormack, Robert McNamara, Chris Gianos, Larry
Seiler, Norman Jouppi, Ken Correll, Todd Dutton & John
Zurawski. Neon: A (Big) (Fast) Single-Chip 3D
Workstation Graphics Accelerator, WRL Research Report
98/1, Revised June 1999, available at
www.research.digital.com/wrl/techreports/pubslist.html.

[10] Joel McCormack, Ronald Perry, Keith I. Farkas & Norman
P. Jouppi. Simple and Table Feline: Fast Elliptical Lines
for Anisotropic Texture Mapping, WRL Research Report
99/1, July 1999, available at www.research.digital.com/
wrl/techreports/pubslist.html

[11] Andreas Schilling, Gunter Knittel & Wolfgang Strasser.
Texram: A Smart Memory for Texturing. IEEE Computer
Graphics and Applications, 16(3): 32-41, May 1996. ISSN
0272-1716.

[12] Lance Williams. Pyramidal Parametrics. In Peter Tanner,
editor, Computer Graphics (SIGGRAPH 83 Conference
Proceedings), volume 17, pages 1-11. ACM, July 1983.
ISBN 0-89791-109-1.

[13] George Wolberg. Digital Image Warping, IEEE Computer
Society Press, Washington, DC, 1990. ISBN 0-8186-8944-
7.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 15 30 45 60 75 90

Viewing Angle

C
yc

le
s/

P
ix

el

Realistic EWA
Optimistic EWA
High-quality Feline
Texram
High-efficiency Feline

Figure 23: Performance at increasingly oblique viewing angles.

250

