
1

Adaptively Sampled Distance Fields (ADFs)
Representing Shape for Computer Graphics

Sarah F. Frisken and Ronald N. Perry
Mitsubishi Electric Research Laboratories

Outline

• Overview of ADFs
• definition
• advantages
• instantiations

• Algorithms for octree-based ADFs
• specifics of octree-based ADFs
• generating, rendering, and triangulating ADFs

• Applications
• sculpting, scanning, meshing, modeling, machining ...

2

Distance Fields

• A distance field is a scalar field that
• specifies the distance to a shape ...
• where the distance may be signed to distinguish

between the inside and outside of the shape

• Distance
• can be defined very generally (e.g., non-Euclidean)
• minimum Euclidean distance is used for most of this

presentation (with the exception of the volumetric molecules)

Distance Fields

2D shape with
sampled distances

to the surface

Regularly sampled
distance values

2D distance field

-65
20

-90
-130 -95 -62 -45 -31 -46 -57 -86 -129

-90 -49 -2 17 25 16 -3 -43 -90

-71 -5 30 -4 -38 -32 -3

-46 12 1 -50 -93 -3

3

2D Distance Field

R shape Distance field of R

2D Distance Field

3D visualization of distance field of R

4

Shape

• By shape we mean more than just the 3D
geometry of physical objects. Shape can have
arbitrary dimension and be derived from
simulated or measured data.

Color gamutColor printer

Conceptual Advantages of
Distance Fields

• Represent more than the surface
• object interior and the space in which the object sits

• Gains in efficiency and quality because
• distance fields vary “smoothly”
• are defined throughout space

• Gradient of the distance field yields
• surface normal for points on the surface
• direction to closest surface point for points off the

surface

5

Practical Advantages of
Distance Fields

• Smooth surface reconstruction
• continuous reconstruction of a smooth field

• Trivial inside/outside and proximity testing
• using sign and magnitude of the distance field

• Fast and simple Boolean operations
• intersection: dist(A∩B) = min(dist(A), dist(B))
• union: dist(A∪B) = max(dist(A), dist(B))

• Fast and simple surface offsetting
• offset by d: dist(Aoffset) = dist(A) + d

• Enables geometric queries such as closest point
• using gradient and magnitude of the distance field

Sampled Distance Fields

• Similar to sampled images, insufficient
sampling of distance fields results in aliasing

• Because fine detail requires dense sampling,
excessive memory is required with regularly
sampled distance fields when any fine detail is
present

6

Adaptively Sampled Distance Fields

• Detail-directed sampling
• high sampling rates only where needed

• Spatial data structure
• fast localization for efficient processing

• ADFs consist of
• adaptively sampled distance values …
• organized in a spatial data structure …
• with a method for reconstructing the distance field

from the sampled distance values

ADF Instantiations

• Spatial data structures
• octrees
• wavelets
• multi-resolution tetrahedral meshes …

• Reconstruction functions
• trilinear interpolation
• B-spline wavelet synthesis
• barycentric interpolation ...

7

Quadtree
2D Spatial Data Structures − An Example

Wavelets
 2D Spatial Data Structures − An Example

8

Multi-resolution Triangulation
 2D Spatial Data Structures − An Example

A Gallery of Examples − A Carved Vase

Illustrates smooth surface reconstruction,
fine carving, and representation of algebraic

complexity

9

A Gallery of Examples − A Carved Slab

Illustrates sharp corners and precise cuts

A Gallery of Examples − A Volume
Rendered Molecule

Illustrates volume rendering of ADFs, semi-transparency,
thick surfaces, and distance-based turbulence

10

A Gallery of Examples − A 2D Crescent

ADFs consolidate the data needed to
represent complex objects

ADFs provide:

• spatial hierarchy

• distance field

• object surface

• object interior

• object exterior

• surface normal
(gradient at
surface)

• direction to closest
surface point
(gradient off
surface)

ADFs - A Unifying Representation

• Represent surfaces, volumes, and implicit
functions

• Represent sharp edges, organic surfaces, thin-
membranes, and semi-transparent substances

• Consolidate multiple structures for complex
objects (e.g., for collision detection, LOD construction, and dynamic meshing)

• Can store auxiliary data in cells or at cell vertices
(e.g., color and texture)

11

Algorithms for Octree-based ADFs

• Specifics of octree-based ADFs
• Generating ADFs
• Rendering ADFs
• Triangulating ADFs

Octree-based ADFs

• A distance value is stored for each cell corner
in the octree

• Distances and gradients are estimated from
the stored values using trilinear reconstruction

12

Reconstruction

A single trilinear field can represent highly curved surfaces

Comparison of 3-color Quadtrees
and ADFs

23,573 cells (3-color) 1713 cells (ADF)

13

Bottom-up Generation

Fully populate Recursively coalesce

Top-down Generation

Recursively subdivideInitialize root cell

14

Tiled Generation

• Reduced memory requirements
• Better memory coherency
• Reduced computation

tiledGeneration(genParams, distanceFunc)
// cells: block of storage for cells
// dists: block of storage for final distance values
// tileVol: temporary volume for computed and
// reconstructed distance values
// bitFlagVol: volume of bit flags to indicate
// validity of distance values in tileVol
// cell: current candidate for tiled subdivision
// tileDepth: L (requires (2L+1)3 volume - the L+1
// level is used to compute cell errors for level L)
// maxADFLevel: preset max level of ADF (e.g., 12)

maxLevel = tileDepth
cell = getNextCell(cells)
initializeCell(cell, NULL) (i.e., root cell)

while (cell)
setAllBitFlagVolInvalid(bitFlagVol)
if (cell.level == maxLevel)
maxLevel = min(maxADFLevel, maxLevel + tileDepth)

recurSubdivToMaxLevel(cell,maxLevel,maxADFLevel)
addValidDistsToDistsArray(tileVol, dists)
cell = getNextCandidateForSubdiv(cells)

initializeCell(cell, parent)
initCellFields(cell, parent, bbox, level)
for (error = 0, pt = cell, face, and edge centers)
if (isBitFlagVolValidAtPt(pt))
comp = getTileComputedDistAtPt(pt)
recon = getTileReconstructedDistAtPt(pt)

else
comp = computeDistAtPt(pt)
recon = reconstructDistAtPt(cell, pt)
setBitFlagVolValidAtPt(pt)

error = max(error, abs(comp - recon))
setCellError(error)

recurSubdivToMaxLevel(cell, maxLevel, maxADFLevel)
// Trivially exclude INTERIOR and EXTERIOR cells
// from further subdivision
pt = getCellCenter(cell)
if (abs(getTileComputedDistAtPt(pt)) >

getCellHalfDiagonal(cell))
// cell.type is INTERIOR or EXTERIOR
setCellTypeFromCellDistValues(cell)
return

// Stop subdividing when error criterion is met
if (cell.error < maxError)
// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromCellDistValues(cell)
return

// Stop subdividing when maxLevel is reached
if (cell.level >= maxLevel)
// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromCellDistValues(cell)
if (cell.level < maxADFLevel)
// Tag cell as candidate for next layer
setCandidateForSubdiv(cell)

return

// Recursively subdivide all children
for (each of the cell’s 8 children)
child = getNextCell(cells)
initializeCell(child, cell)
recurSubdivToMaxLevel(child, maxLevel, maxADFLevel)

// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromChildrenCellTypes(cell)

// Coalesce INTERIOR and EXTERIOR cells
if (cell.type != BOUNDARY) coalesceCell(cell)

Tiled Generation Pseudocode

15

Tiled Generation − Overview

• Recursively subdivide root cell to a level L

• Cells at level L requiring further subdivision are
appended to a list of candidate cells, C-list

• These candidate cells are recursively subdivided
between levels L and 2L, where new candidate
cells are produced and appended to C-list

• Repeat layered production of candidate cells (2L
to 3L, etc.) until C-list is empty

Tiled Generation − Candidate Cells

• A cell becomes a candidate for further
subdivision when all of the following are true:
• it is a leaf cell of level L, or 2L, or 3L, etc.
• it can not be trivially determined to be an interior or

exterior cell
• it does not satisfy a specified error criterion
• its level is below a specified maximum ADF level

16

Tests for Candidate Cells

(1) all di have same sign
(2) all || di || > ! cell diagonal

Test to trivially determine if
a cell is interior or exterior

19 test points to
determine cell error

Tiled Generation − Tiling

• For each candidate cell, computed and
reconstructed distances are produced only as
needed during subdivision

• These distances are stored in a tile, a regularly
sampled volume

• The tile resides in cache memory and its size
determines L

• A volume of bit flags keeps track of valid
distances in the tile to ensure that distances are
computed only once

17

Tiled Generation − Tiling

• For coherency, cells and final distances are
stored in two separate contiguous memory
blocks

• After a candidate cell has been processed, valid
distances in the tile are appended to the block of
final distances

• Special care is taken at tile boundaries to ensure
that distances are never duplicated for
neighboring cells

Tiled Generation − Cache Efficiency

• Tile sizes can be tuned to the CPU cache
architecture

• For current Pentium systems, a tile size of 163

has worked most effectively

• Using a separate bit flag volume further
enhances cache effectiveness and provides fast
invalidation of tile distances prior to processing
each candidate cell

18

Rendering

• Ray casting
• Adaptive ray casting
• Point-based rendering
• Triangles

Ray Casting
Ray-surface Intersection with a Cubic Solver

• See Parker et al., ”Interactive Ray Tracing for Volume Visualization”

19

Ray Casting
Ray-surface Intersection with a Linear Solver

• Assume that distances vary linearly along the ray
• Determine the zero-crossing within the cell given distances at the

points where the ray enters and exits the cell

Ray Casting
Crackless Surface Rendering with the Linear Solver

• Set the distance at the entry point of a cell equal to the distance
computed for the exit point of the previous cell

20

Ray Casting
Volume Rendering

• Colors and opacities are accumulated at equally spaced samples along
each ray

Adaptive Ray Casting

• The image region to be rendered is divided
into a hierarchy of image tiles

• The subdivision of each tile is guided by a
perceptually-based predicate

• Pixels within image tiles of size greater than
1x1 are bilinearly interpolated to produce the
image

• Rays are cast into the ADF at tile corners and
intersected with the surface using the linear
solver

21

Adaptive Ray Casting

• The predicate individually weights the contrast
in the red, green, and blue channels and the
variance in depth-from-camera across the tile
• See Mitchell , SIGGRAPH’87, and Bolin and Meyer, SIGGRAPH’98

• Results in a typical 6:1 reduction in rendering
time over non-adaptive ray casting

Adaptive Ray Casting

Adaptively ray cast ADF Rays cast to render part
of the left image

22

Point-based Rendering

• Determine the number of points to generate in
each boundary leaf cell
• Compute an estimate of the object’s surface area

within each boundary leaf cell areaCell and the total
estimated surface area of the object,
areaObject = Σ=areaCell

• Set the number of points in each cell nPtsCell
proportional to areaCell / areaObject

• For each boundary leaf cell in the ADF
• Generate nPtsCell random points in the cell
• Move each point to the object’s surface using the

distance and gradient at the point

Point-based Rendering
Pseudocode

generatePoints(adf, points, nPts, maxPtsToGen)
// Estimate object’s surface area within each boundary leaf
// cell and the total object’s surface area
for (areaObject = 0, level = 0 to maxADFLevel)
nCellsAtLevel = getNumBoundaryLeafCellsAtLevel(adf, level)
areaCell[level] = sqr(cellSize(level))
areaObject += nCellsAtLevel * areaCell[level]

// nPtsCell is proportional to areaCell / areaObject
for (level = 0 to maxADFLevel)
nPtsAtLevel[level] = maxPtsToGen * areaCell[level] / areaObject

// For each boundary leaf cell, generate cell points
// and move each point to the surface
for (nPts = 0, cell = each boundary leaf cell of adf)
nPtsCell = nPtsAtLevel[cell.level]
while (nPtsCell--)
pt = generateRandomPositionInCell(cell)
d = reconstructDistAtPt(cell, pt)
n = reconstructNormalizedGradtAtPt(cell, pt)
pt += d * n
n = reconstructNormalizedGradtAtPt(cell, pt)
setPointAttributes(pt, n, points, nPts++)

23

Point-based Rendering

An ADF
rendered
as points

at two
different

scales

Triangle Rendering

• ADFs can also be rendered by triangulating the
surface and using graphics hardware to
rasterize the triangles

• Triangulation is fast
• 200,000 triangles in 0.37 seconds, Pentium IV
• 2,000 triangles in < 0.01 seconds

• The triangulation produces models that are
orientable and closed

24

Triangulation

• Seed − Each boundary leaf cell of the ADF is
assigned a vertex that is initially placed at the
cell’s center

• Join − Vertices of neighboring cells are joined
to form triangles

• Relax − Vertices are moved to the surface
using the distance field

• Improve − Vertices are moved over the
surface towards their average neighbors'
position to improve triangle quality

Triangulation

• Vertices are joined to form triangles using the
following observations
• A triangle joins the vertices of 3 neighboring cells

that share a common edge (hence triangles are
associated with cell edges)

• A triangle is associated with an edge only if that
edge has a zero crossing of the distance field

• The orientation of the triangle can be derived from
the orientation of the edge it crosses

• In order to avoid making redundant triangles, we
consider 6 of the 12 possible edges for each cell

25

Triangulation − Surface Cracks

As with other algorithms,
this type of crack occurs
very rarely but we can
prevent it with a simple
pre-conditioning step

Most triangulation algorithms
for adaptive grids suffer from
this type of crack; our
algorithm does not

Triangulation − Pre-conditioning

• In 3D, the pre-conditioning step compares the
number of zero-crossings of the iso-surface for
each face of each boundary leaf cell to the
total number of zero-crossings for faces of the
cell's face-adjacent neighbors that are shared
with the cell

• When the number of zero-crossings are not
equal for any face, the cell is subdivided using
distance values from its face-adjacent
neighbors until the number of zero-crossings
match

26

triangulateADF(adf)

// vertices: storage for vertices

// triangles: storage for triangles

// Initialize triangles vertices at cell centers

// and associate each vertex with its cell

for (cell = each boundary leaf cell of adf)

v = getNextVertex(vertices)

associateVertexWithCell(cell, v)

v.position = getCellCenter(cell)

// Make triangles. Each cell edge joins two cell

// faces face1 and face2 which are ordered to ensure

// a consistent triangle orientation (see EdgeFace

// table below). For a given cell edge and face,

// getFaceNeighborVertex returns either the vertex of

// the cell’s face-adjacent neighbor if the

// face-adjacent neighbor is the same size or larger

// than the cell, OR, the vertex of the unique child

// cell (uniqueness is guaranteed by a

// pre-conditioning step) of the face-adjacent

// neighbor that is both adjacent to the face and

// has a zero-crossing on the edge

for (cell = each boundary leaf cell of adf)

for (edge = cell’s up-right, down-left, up-front,

down-back, front-right, and back-left edges)

if (surfaceCrossesEdge(edge))

face1 = EdgeFace[edge].face1

face2 = EdgeFace[edge].face2

v0 = getCellsAssociatedVertex(cell)

v1 = getFaceNeighborVertex(face1, edge)

v2 = getFaceNeighborVertex(face2, edge)

t = getNextTriangle(triangles)

if (edgeOrientation(edge) > 0)

t.v0 = v0, t.v1 = v1, t.v2 = v2

else

t.v0 = v0, t.v1 = v2, t.v2 = v1

// Relax each vertex to the surface and then along

// the tangent plane at the relaxed position towards

// the average neighbor position

for (each vertex)

v = getVertexPosition(vertex)

u = getAveragePositionOfNeighborVertices(vertex)

cell = getVertexCell(vertex)

d = reconstructDistAtPt(cell, v)

n = reconstructNormalizedGradtAtPt(cell, v)

v += d * n

v += (u - v) - n · (u - v)

// --

// EdgeFace table:

// edge face1 face2

// ---------- ----- -----

// up-right up right

// down-left down left

// up-front up front

// down-back down back

// front-right front right

// back-left back left

Triangulation − Level-of-Detail

• The octree is traversed and vertices are
seeded into boundary cells whose maximum
error satisfies a user-specified threshold

• Cells below these cells in the hierarchy are
ignored

• The error threshold can be varied continuously
enabling fine control over the number of
triangles generated

• Time to produce an LOD model is proportional
to the number of vertices in the output mesh

27

Triangulation − Level-of-Detail

Applications

• Sculpting
• 3D scanning
• Dynamic meshing
• Physically-based modeling
• Color management
• Volumetric effects
• Machining

28

Sculpting
“Kizamu: A System for Sculpting Digital Characters”

• ADFs can represent both
smooth surfaces and
sharp corners without
excessive memory

• Carving is direct,
intuitive, and fast

• Does not require control
point manipulation or
trimming

• The distance field can be
used to position and
orient the sculpting tool
or to constrain carving

3D Scanning

• Use of distance fields
provides more robust,
water-tight surfaces

• ADFs result in significant
savings in memory and
distance computations

• Resultant models can be
directly sculpted to
correct the scanned data

• Fast new triangulation
method produces optimal
triangle meshes from the
ADF

29

Dynamic Meshing
Level-of-Detail and View Dependent Triangulation

• ADF octree provides
hierarchical structure for
generating LOD models

• View-dependent meshing
uses ADF hierarchy, cell
size, and cell gradients

• ADF cell error enables
fine control over triangle
count in LOD meshes

• Real-time ADF
triangulation algorithm
produces meshes that
are orientable and closed

Physically-based Modeling

• ADFs provide a compact
representation of complex
surfaces

• ADF spatial hierarchy and
trivial inside/outside tests
enable fast collision
detection

• Distance field provides
penetration depths for
computing impact forces

• Distance field allows
computation of material-
dependent contact
deformation

30

Color Management
 Representing Color Gamuts

• ADF distance field
enables a fast, simple
out-of-gamut test

• ADFs provide a compact
representation of
complex gamut shapes

• Gamut test is very
accurate near the gamut
surface

• Distance and gradient
indicate how far out of
gamut a color lies and
the direction to the
nearest in-gamut color

Volumetric Effects

• Offset surfaces can be
used to render thick,
translucent surfaces

• Volume texture can be
added within the thick
surface

• Distance values away
from the surface can be
used for special effects
(e.g., turbulent haze)

• Octree and distance field
allow space-leaping and
other methods to speed
up volume rendering

31

Machining

• ADFs represent surfaces,
object interiors, and the
material to be removed

• ADFs represent smooth
surfaces and very fine
detail

• Trivial inside/outside and
proximity tests are useful
for designing tool paths

• Gradients can be used to
select tool orientation

• Offset surfaces can be
used for rough cutting in
coarse-to-fine milling

For More Information
At Siggraph 2001

• Paper presentation:
• “Kizamu: A System for Sculpting Digital Characters”,

Wednesday, 15 August, 10:30 am

• Sketches:
• “Dynamic Meshing Using Adaptively Sampled Distance

Fields”, Wednesday, 15 August, 4:30 pm
• “A Computationally Efficient Framework for Modeling Soft

Body Impact”, Thursday, 18 August, 8:30 am
• “Computing 3D Geometry Directly from Range Images”,

Friday, 17 August, 2:20 pm

32

For More Information
In Your Course Notes

• A nearly final version of the Kizamu paper, SIGGRAPH 2001 and MERL
Technical Report TR2001-08

• “A New Representation for Device Color Gamuts”, MERL Technical Report
TR2001-09

• “Computing 3D Geometry Directly from Range Images”, SIGGRAPH 2001
Technical Sketch and MERL Technical Report TR2001-10

• “A Computationally Efficient Framework for Modeling Soft Body Impact”,
SIGGRAPH 2001 Technical Sketch and MERL Technical Report TR2001-11

• “A New Framework For Non-Photorealistic Rendering”, MERL Technical
Report TR2001-12

• “Dynamic Meshing Using Adaptively Sampled Distance Fields”, SIGGRAPH
2001 Technical Sketch and MERL Technical Report TR2001-13

• “Adaptively Sampled Distance Fields: A General Representation of Shape
for Computer Graphics”, SIGGRAPH 2000 and MERL Technical Report
TR2000-15

• “Using Distance Maps for Accurate Surface Representation in Sampled
Volumes”, IEEE VolVis Symp. 1998 and MERL Technical Report TR99-25

The End

