

Direct Rendering

May 2, 2005

Direct Rendering Goals

• General Goals

– Small memory footprint

– Fast rendering

– High-quality results identical to those of Saffron – V1 using
distance-based anti-aliasing and alignment zones

Direct Rendering Goals

• Specific Goals

– Avoid explicit ADF generation

– Compute a minimum number of distances

• Only compute distances near the edge of a glyph (i.e., within the
“filter area”)

• Set areas outside the filter area without computing distances

• For each sample point within the filter area, only compute the
distance to the nearest “feature” (line, curve, corner)

• Avoid computing distances to the endpoints of lines and curves

• Eliminate bounding box tests

Direct Rendering Goals

• Specific Goals

– Amenable to CPU, GPU, and ASIC implementations

– Suitable for outlines and stroke-based formats

– Solve known issues

• Robust predicate test for special cells

• Support gross deformation and non-uniform scaling

Direct Rendering

• Direct rendering vs. explicit ADF generation

– An explicit ADF representation computes distances for all
potential density images and thus can be used to render
multiple density images of the same glyph

• Different point sizes

• Different rotation angles

• Different CSM parameters

– Varying stroke weight and edge sharpness

– Direct rendering only computes distances needed for a
particular density image

• Produces the density image for a single set of glyph attributes as
efficiently as possible

Explicit ADF Generation

Generate ADF

Render ADF
- Locate cell
- Reconstruct dist
- Map to density

Path

ADF

Glyph Attributes
- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt

6 pt

Potentially too slow
for processor-
constrained devices

Potentially too big to
cache for memory-
constrained devices

Direct Rendering

Direct
Rendering

Map to
Density

Path

Glyph Attributes
- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt Map to
Density

Map to
Density

6 pt

Distance buffer

Direct Rendering

• Basic approach

– Divide the distance field for each glyph into three areas

• Outside area

• Inside area

• Filter area

– Render each area separately to determine distances,
combining these distances in a distance buffer the size of
the density image

• Initialize the buffer to a large negative value (< outside cutoff)

• Fill the inside area with a large positive value (> inside cutoff)

• Compute distances in the filter area and combine in the buffer

– Map distances in the distance buffer to density values

Direct Rendering

• Basic approach

Initialize distance
buffer to large
neg. value (<
outside cutoff)

Fill inside with
large pos. value
(> inside cutoff)

Compute distances
in the filter area

and combine in the
distance buffer

Map distances to
density values

Direct Rendering

• Basic approach

– The geometry defining the filter area

• Can be very coarse (a fine sweep is unnecessary)

• Is fast to determine

• Is composed of simple shapes which can be decomposed into
primitive shapes (e.g., triangles and quadrilaterals) which are fast
and simple to render on CPUs, GPUs, and ASICs

– Exploit the mathematical properties of distance fields and
features (lines, corners, curves) to compute distances within
the filter area very efficiently

– For each sample point within the filter area, only computes
distances to features within the filter radius

Direct Rendering

• Step 1: Setting the outside area

Initialize distance
buffer to large
neg. value (<
outside cutoff)

Fill inside with
large pos. value
(> inside cutoff)

Compute distances
in the filter area

and combine in the
distance buffer

Map distances to
density values

Direct Rendering

• Step 2: Filling the inside area

Initialize distance
buffer to large
neg. value (<
outside cutoff)

Fill inside with
large pos. value
(> inside cutoff)

Compute distances
in the filter area

and combine in the
distance buffer

Map distances to
density values

Direct Rendering

• Filling the inside area

– Two approaches

• Rasterize the original outline using a binary fill

• Rasterize a polygonal shape approximating the inside area

Approximate the inside area

with a simpler shape

Rasterize the outline using a

binary fill

Direct Rendering

• Filling the inside area

– The filled inside area can overlap the filter area

• Distance values computed from overlapping areas are combined in
the distance buffer

– Combining chooses the smallest distance value

• Distances in the filter area will be smaller than the inside fill value
so they will be chosen over the inside value during combining

Direct Rendering

• Step 3: Computing distances in the filter area

Initialize distance
buffer to large
neg. value (<
outside cutoff)

Fill inside with
large pos. value
(> inside cutoff)

Compute distances
in the filter area

and combine in the
distance buffer

Map distances to
density values

Direct Rendering

• Filter area

– The region of the distance field that is mapped to a density
value between zero and one

• Depends on the CSM parameters (inside and outside cutoff) and
point size

– This approach produces the same density image as Saffron – V1
(i.e., explicit ADF generation)

– Identical density image yields identical type quality

Distance

Density

Inside

cutoff

max

Outside

cutoff

Inside area Outside area

Filter area

72 pt

24 pt

6 pt

Rendered glyph Anti-aliased pixels Required filter area

The filter area depends on point size

Direct Rendering

• Computing distances in the filter area

– Consider each feature (line, corner, curve) independently

• Define a region bounding the feature’s contribution to the filter area

• Compute the distance to the feature for each density image pixel
(or pixel component) in that region

– Combine distances in the distance buffer

• Choose the smallest distance for each pixel (or pixel component)

• This provides accurate distance values  no quality compromise

Direct Rendering

• Efficient distance computation

– Each feature contributes to a limited region of the filter area

– The distance near more than one feature is the smallest of the
distances to each nearby feature

Green line
contributes to
this region of
the filter area

Blue line
contributes

Green and blue
lines contribute

Glyph outline Filter area

Direct Rendering

Define regions bounding each

feature’s contribution to the

filter area
 Regions can overlap

 Regions can be too big (but not

 too small)

 Choose simple shapes that are

 easy to determine and to rasterize

Compute distances for each

region and combine them in

the distance buffer
 In each region, compute

 distance to a single feature

 Combining chooses the smallest

 distance value for each pixel or

 pixel component

Corner

bounding

region

Line

bounding

region

Curve

bounding

region

Direct Rendering

• Regions for bounding features

Line bounding region
- Perpendicular to line at endpoints

- Spans outside to inside cutoffs

- Distance field is linear

Corner bounding regions
- Limited by normals of adjacent edges

- Diameter determined by filter cutoffs

- Distance field is quadratic

Curve bounding region
- Perpendicular to curve at endpoints

- Polygonal shape

- Based on convex hull of quadratic

 curve (easy to determine)

• Computing distances in feature regions

– Lines

• Analytic method

– Rasterize quadrilateral region bounding the line

– Compute the distance at each sample point P inside the quadrilateral
region according to dist(P) = (P – P0)×(P1 – P0) / ||(P1 – P0)||

– Note that the quadrilateral region is constructed to avoid

» Endpoint distance computations

» Conditionals

Direct Rendering

P0 P1

P

Line P0P1

Vector (P - P0) Minimum distance to line P0P1

Direct Rendering

• Computing distances in feature regions

– Corners

• Analytic method (use squared distances to avoid square roots)

– Rasterize triangles partitioning the region bounding the corner

– Compute the distance at each sample point P inside each triangle
according to squaredDist(P) = ||(P – P0)||

2 = (x – x0)
2 + (y – y0)

2

P0 = (x0, y0)

P = (x, y)

Minimum distance to corner point P0

Corner point

Direct Rendering

• Computing distances in feature regions

– Curves

• Texture mapping (use squared distances to avoid square roots)

– Rasterize triangles partitioning the region bounding the curve

– Compute the distance at each sample point P inside each triangle by

» Mapping P to P’ in a canonical parabola (i.e., y = x2) distance field
stored in a texture map

» Texture map contains, for every point in space, the vector (dx,dy)
to the closest point on the canonical parabola

» Determining (dx’, dy’) at P’ from the texture map using bilinear
interpolation

» Mapping (dx’, dy’) to (dx, dy) in the coordinates of the sample
point

» Computing squaredDist(P) = dx2 + dy2

Direct Rendering

P’

P0

P

P1

P2

Canonical parabola distance
field and transformed sample
point P’ and curve control
points

Curve with control points
P0, P1, and P2. Sample
point P.

P’0
P’1

P’2

Direct Rendering

• Computing distances in feature regions

– Curves

• Analytic method (use squared distances to avoid square roots)

– Rasterize triangles partitioning the region bounding the curve

– Compute the distance at each sample point P inside each triangle using
a cubic root finder

– Cubic root finder can be accelerated by mapping the sample point P to
a canonical parabola (y = x2) which defines convergence regions and
an initial guess for the solution

Direct Rendering

• Back-of-the-envelope calculation

– 200 MHz ARM 9 processor

• 66K Gouraud-shaded texture-mapped triangles per second when
rendering a full-screen (320x320) 3D model

– Direct rendering rates

• Average outline: 10 corners, 10 lines, 15 Bezier curves

• 3 triangles per corner, 2 per line, 5 per curve

  125 triangles to represent the filter area

• Can direct render 66K/125 = 520 full screen glyphs (320x320)
per second

• Glyphs occupying less screen space (typical point sizes) would
render significantly faster

• With a density image cache that delivers a 90% hit rate, rendering
throughput increases by 10x

Direct Rendering Summary

• Accurate

– Given a set of glyph attributes, direct rendering produces the
same density image as would be produced via explicit ADF
generation

• Fast

– Minimum number of distance computations
• Only compute distances in the filter area

• Filter area is fast to determine and can be decomposed into
primitive shapes that are fast and simple to render on CPUs, GPUs,
and ASICs

• Computing distances within each primitive shape is fast and simple

• Low memory overhead

– Compute distances directly from outlines or strokes
• Process each feature independently

• Buffer for combining distances the same size as the final density
image

