C:\Users\perry\Desktop\MERL\SaffronDemos\. . .\Source\SaffronLib\ADFImplicitFloat.c

Copyright 2004-2008 Mitsubishi Electric Research Laboratories (MERL)
An implementation for processing (e.g., generating and rendering) implicit ADFs
Ronald Perry, Sarah Frisken, and Eric Chan

This file contains the floating point implementation for processing implicit
ADFs. The corresponding fixed point implementation for processing implicit ADFs
is contained in ADFImplicitFixed.c, which is modelled after the floating point
implementation. Consequently, any changes made to this file must be reflected
appropiately in ADFImplicitFixed.c.

Throughout this file, suggestions for possible implementation changes are
annotated as development notes, i.e., DevNotes.

Overview
This file contains the following major functional blocks:

(1) Implicit ADF generation
(2) Implicit ADF rendering
(3) Support for implicit ADF SAZ alignment zone detection
(4) Implicit ADF validation

Implicit ADF generation converts a given ADFPath from font units to ADF
coordinates. The resultant representation (viewed as an opaque ADF to the
application but considered a preprocessed ADFPath internally) can effectively
be scaled, translated, rotated, sheared, etc. (by setting the appropriate
ADFRenderSetup() attributes) prior to rendering without affecting the quality
of the rendered image. Note also that the preprocessed ADFPath (i.e., the
generated ADF) can be cached as an ADF using the library®s dual caching
system.

Implicit ADF rendering generates an implicit ADF from a given preprocessed
ADFPath (viewed as an opaque ADF to the application), renders the implicit
ADF into a distance buffer using the specified rendering attributes, and then
maps distances in the distance buffer to density values. These density values
are packed into pixels of a specified density image. Implicit ADF rendering
of an outline-based glyph comprises the following steps:

(1) Each pixel (for CRT rendering) or each pixel component (for LCD
rendering) of the specified density image is cleared to zero.

(2) A distance buffer is created large enough to store a distance sample
for each pixel or pixel component of the specified density image. A
distance buffer is a 2D array of floating point values that is used
to combine distances from contributing elements (i.e., line segments
and corners) of the preprocessed ADFPath at each sample point. Each
distance sample in the distance buffer is initialized to
LARGE_OUTSIDE_DIST_VAL. Note that a distance value of
LARGE_OUTSIDE_DIST_VAL maps to zero density in the density image.

(3) Pen commands in the preprocessed ADFPath are transformed from ADF
coordinates to floating point image coordinates. If requested, MAZ
alignment zone detection and grid fitting are performed on the
transformed pen commands (see ADFAlgnZonesMAZ.h,
ADFAIgnZonesMAZOutlines.c, and ADFAIgnZonesMAZStrokes.c for details).

(4) An internal path is created from the transformed pen commands. The
internal path is used to generate and render implicit ADF boundary
cells and to rasterize the glyph interior. Curvto commands in the
transformed pen commands are not added to the internal path, but



C:\Users\perry\Desktop\MERL\SaffronDemos\. . .\Source\SaffronLib\ADFImplicitFloat.c

G

®

@

instead are replaced by a sequence of lineto commands that closely
approximate the corresponding curve segment. Subdividing curve
segments into line segments has significant advantages in performance
and ease of implementation over processing curve segments directly
(see CreatelnternPath() for more details).

Each element of the internal path is processed. For each element, an
implicit ADF boundary cell is generated. The implicit ADF boundary
cell includes a representation of the cell"s geometry (e.g., its
vertices) and data required to compute the minimum unsigned Euclidean
distance from any point inside the implicit ADF boundary cell to the
element represented by the implicit ADF boundary cell. Implicit ADF
boundary cells are represented in floating point image coordinates.
The size and geometry of an implicit ADF boundary cell is constructed
such that it covers the area obtained by sweeping a line segment
along the section of the internal path corresponding to the element
represented by the implicit ADF boundary cell, where the swept line
segment is perpendicular to the element and extends on each side of
the element by the specified CSM filter cutoff values. Consequently,
the union of the geometry of the implicit ADF boundary cells for all
elements of the internal path is guaranteed to cover those sample
points which require antialiasing. By computing distances only near
the edge of a glyph, the time required to render the glyph is
minimized. As each implicit ADF boundary cell is generated, the
implicit ADF boundary cell is rendered into the distance buffer by
rasterizing the cell interior, determining the minimum unsigned
Euclidean distance from each sample point to the element represented
by the implicit ADF boundary cell, and combining the determined
distance value with the corresponding distance sample stored in the
distance buffer. The combining selects the minimum magnitude
distance. To reduce the number of comparisons, all determined
unsigned distances are converted to negative values and distances are
combined by choosing the maximum negative distance. Distances
corresponding to sample points inside the ADF glyph are converted to
positive values in the next step (i.e., step (6) of rendering).

The interior of the implicit ADF glyph is rasterized and distances in
the distance buffer for sample points inside the glyph are converted
to positive values, thereby completing the computation of an
adaptively sampled signed distance field of the implicit ADF glyph.

Distances in the distance buffer are mapped to density values by
applying the given CSM parameters. Color reduction is applied to
these density values during LCD rendering if enabled. The final
density values are packed into the specified ADFImage, where the
packing depends on the display mode.

Implicit ADF rendering of a uniform-width stroke-based glyph differs from
implicit ADF rendering of an outline-based glyph in the following ways:

@

(b

©

Before the elements of the internal path are processed as described
above in step (5), the CSM inside and outside filter cutoff values
are both decreased by half the stroke width. These adjustments are
required to account for the stroke width of the uniform-width
stroke-based glyph. Effectively, this step moves the filter position
outward (i.e., away from the centerlines of the glyph) by half the
stroke width without changing the CSM filter width.

Step (6) (i.e., the rasterization of the interior of the implicit ADF
glyph) is skipped. In the case of a uniform-width stroke-based

glyph, the interior is rendered during step (5) (i.e., during the
processing of each element of the internal path). Therefore, it is
unnecessary to rasterize the interior of the implicit ADF glyph in a
separate step.

After the distances in the distance buffer have been mapped to
density values as described above in step (7), the adjusted CSM



C:\Users\perry\Desktop\MERL\SaffronDemos\. . .\Source\SaffronLib\ADFImplicitFloat.c

inside and outside filter cutoff values are restored to their
original values.

Implicit ADF rendering of a stylized stroke-based glyph (i.e, an SSF glyph)
uses a hybrid of the approaches used for rendering outline-based glyphs and
uniform-width stroke-based glyphs. Rendering an SSF glyph comprises the
following steps:

€Y
(2)
€

€Y}

)

)

@

Same as above
Same as above
Same as above

Same as above with the following additions: a) corners are detected
in the SSF glyph and annotated in the SSF internal path; b) unit
normal vectors are computed from the original stroke path at each
pen position in the SSF internal path (these unit normal vectors are
used for generating implicit ADF boundary cells); c) the normalized
length along each stroke skeleton is computed for each pen position
in the SSF internal path (the normalized length is used for
evaluating profiles).

First, stroke bodies are rendered as signed distance fields and
composited with distances of the previously rendered stroke bodies by
taking the maximum distance value (i.e., by performing a CSG union
operation). For each element of the SSF internal path, an implicit
ADF boundary cell (i.e., a line cell) is generated. The geometry of
the line cell is determined from its corresponding line segment and
unit normal vectors and is constructed to enclose all of the sample
points that may be closest to the line segment and are either inside
the stroke body or within the filter radius of the edges of the
stroke body. For each sample point in the line cell, the minimum of
the closest signed distances to the left and right edges of the
stroke body is determined from the line segment and the left and
right stroke profiles of the SSF glyph; this minimum distance is then
composited with the corresponding distance in the distance buffer by
taking the maximum distance value. Second, each endcap and corner
(i.e., each stroke serif) of the SSF glyph is rendered into a small
temporary distance buffer which is then composited with the main
distance buffer using a CSG union operation (i.e., by taking the
maximum distance value for each sample point). For each serif, the
serif"s open path is transformed (i.e., rotated, translated, and
scaled) to fit the end or corner of the appropriate stroke skeleton,
and used to generated an implicit ADF of type ADF_OUTLINE_PATH whose
ADF coordinates are identical to image coordinates (i.e., the
rendering transform from ADF coordinates to image coordinates is the
identity matrix). An internal path of type ADF_OUTLINE_PATH, in which
curve segments of the implicit ADF are approximated by a set of line
segments, is then created from the implicit ADF. The internal path is
rendered by Ffirst generating an implicit ADF boundary cell for each
element of the internal path, determining an unsigned distance from
each sample point inside the ADF boundary cell to the corresponding
element, and compositing the negative of the unsigned distance with
the corresponding distance in the temporary distance buffer by taking
the maximum negative value. The serif"s open path is then closed
(e.g-., by connecting each end of an open corner path to the corner
point for a stroke corner) and the sign of the distance value of each
sample point inside the closed path is changed from negative to
positive.

Similar to uniform-width stroke-based glyphs, the interior is
rendered during step (5), thereby eliminating the need to rasterize
the interior of the SSF glyph in a separate step.

Same as above

Support for implicit ADF SAZ alignment zone detection consists of a function
for sampling the distance field of a specified implicit ADF to determine a



C:\Users\perry\Desktop\MERL\SaffronDemos\. . .\Source\SaffronLib\ADFImplicitFloat.c

// distance map of size w x h, i.e., a 2D image of floating point distance

// values. During sampling, the [0.0,1.0] x [0.0,1.0] bounding box of the

// implicit ADF is scaled to the [0,w-1] x [0,h-1] distance map.

//

// Implicit ADF validation provides a function for drawing a specified implicit
// ADF and its SAZ alignment zones. This function permits validation of the

// distance field of the implicit ADF glyph and for the placement of its SAZ

// alignment zones. Note that MAZ alignment zones are not supported by this

// function.



