
1C:\Users\perry\Desktop\MERL\SaffronDemos\...\Source\SaffronLib\ADFImplicitFloat.c

//---
// Filename: ADFImplicitFloat.c
//---
//---
// Copyright 2004-2008 Mitsubishi Electric Research Laboratories (MERL)
// An implementation for processing (e.g., generating and rendering) implicit ADFs
// Ronald Perry, Sarah Frisken, and Eric Chan
//---
//---
// This file contains the floating point implementation for processing implicit
// ADFs. The corresponding fixed point implementation for processing implicit ADFs
// is contained in ADFImplicitFixed.c, which is modelled after the floating point
// implementation. Consequently, any changes made to this file must be reflected
// appropiately in ADFImplicitFixed.c.
//---
//---
// Throughout this file, suggestions for possible implementation changes are
// annotated as development notes, i.e., DevNotes.
//---
//---
// Overview
//
// This file contains the following major functional blocks:
//
// (1) Implicit ADF generation
// (2) Implicit ADF rendering
// (3) Support for implicit ADF SAZ alignment zone detection
// (4) Implicit ADF validation
//
// Implicit ADF generation converts a given ADFPath from font units to ADF
// coordinates. The resultant representation (viewed as an opaque ADF to the
// application but considered a preprocessed ADFPath internally) can effectively
// be scaled, translated, rotated, sheared, etc. (by setting the appropriate
// ADFRenderSetup() attributes) prior to rendering without affecting the quality
// of the rendered image. Note also that the preprocessed ADFPath (i.e., the
// generated ADF) can be cached as an ADF using the library's dual caching
// system.
//
// Implicit ADF rendering generates an implicit ADF from a given preprocessed
// ADFPath (viewed as an opaque ADF to the application), renders the implicit
// ADF into a distance buffer using the specified rendering attributes, and then
// maps distances in the distance buffer to density values. These density values
// are packed into pixels of a specified density image. Implicit ADF rendering
// of an outline-based glyph comprises the following steps:
//
// (1) Each pixel (for CRT rendering) or each pixel component (for LCD
// rendering) of the specified density image is cleared to zero.
//
// (2) A distance buffer is created large enough to store a distance sample
// for each pixel or pixel component of the specified density image. A
// distance buffer is a 2D array of floating point values that is used
// to combine distances from contributing elements (i.e., line segments
// and corners) of the preprocessed ADFPath at each sample point. Each
// distance sample in the distance buffer is initialized to
// LARGE_OUTSIDE_DIST_VAL. Note that a distance value of
// LARGE_OUTSIDE_DIST_VAL maps to zero density in the density image.
//
// (3) Pen commands in the preprocessed ADFPath are transformed from ADF
// coordinates to floating point image coordinates. If requested, MAZ
// alignment zone detection and grid fitting are performed on the
// transformed pen commands (see ADFAlgnZonesMAZ.h,
// ADFAlgnZonesMAZOutlines.c, and ADFAlgnZonesMAZStrokes.c for details).
//
// (4) An internal path is created from the transformed pen commands. The
// internal path is used to generate and render implicit ADF boundary
// cells and to rasterize the glyph interior. Curvto commands in the
// transformed pen commands are not added to the internal path, but

2C:\Users\perry\Desktop\MERL\SaffronDemos\...\Source\SaffronLib\ADFImplicitFloat.c

// instead are replaced by a sequence of lineto commands that closely
// approximate the corresponding curve segment. Subdividing curve
// segments into line segments has significant advantages in performance
// and ease of implementation over processing curve segments directly
// (see CreateInternPath() for more details).
//
// (5) Each element of the internal path is processed. For each element, an
// implicit ADF boundary cell is generated. The implicit ADF boundary
// cell includes a representation of the cell's geometry (e.g., its
// vertices) and data required to compute the minimum unsigned Euclidean
// distance from any point inside the implicit ADF boundary cell to the
// element represented by the implicit ADF boundary cell. Implicit ADF
// boundary cells are represented in floating point image coordinates.
// The size and geometry of an implicit ADF boundary cell is constructed
// such that it covers the area obtained by sweeping a line segment
// along the section of the internal path corresponding to the element
// represented by the implicit ADF boundary cell, where the swept line
// segment is perpendicular to the element and extends on each side of
// the element by the specified CSM filter cutoff values. Consequently,
// the union of the geometry of the implicit ADF boundary cells for all
// elements of the internal path is guaranteed to cover those sample
// points which require antialiasing. By computing distances only near
// the edge of a glyph, the time required to render the glyph is
// minimized. As each implicit ADF boundary cell is generated, the
// implicit ADF boundary cell is rendered into the distance buffer by
// rasterizing the cell interior, determining the minimum unsigned
// Euclidean distance from each sample point to the element represented
// by the implicit ADF boundary cell, and combining the determined
// distance value with the corresponding distance sample stored in the
// distance buffer. The combining selects the minimum magnitude
// distance. To reduce the number of comparisons, all determined
// unsigned distances are converted to negative values and distances are
// combined by choosing the maximum negative distance. Distances
// corresponding to sample points inside the ADF glyph are converted to
// positive values in the next step (i.e., step (6) of rendering).
//
// (6) The interior of the implicit ADF glyph is rasterized and distances in
// the distance buffer for sample points inside the glyph are converted
// to positive values, thereby completing the computation of an
// adaptively sampled signed distance field of the implicit ADF glyph.
//
// (7) Distances in the distance buffer are mapped to density values by
// applying the given CSM parameters. Color reduction is applied to
// these density values during LCD rendering if enabled. The final
// density values are packed into the specified ADFImage, where the
// packing depends on the display mode.
//
// Implicit ADF rendering of a uniform-width stroke-based glyph differs from
// implicit ADF rendering of an outline-based glyph in the following ways:
//
// (a) Before the elements of the internal path are processed as described
// above in step (5), the CSM inside and outside filter cutoff values
// are both decreased by half the stroke width. These adjustments are
// required to account for the stroke width of the uniform-width
// stroke-based glyph. Effectively, this step moves the filter position
// outward (i.e., away from the centerlines of the glyph) by half the
// stroke width without changing the CSM filter width.
//
// (b) Step (6) (i.e., the rasterization of the interior of the implicit ADF
// glyph) is skipped. In the case of a uniform-width stroke-based
// glyph, the interior is rendered during step (5) (i.e., during the
// processing of each element of the internal path). Therefore, it is
// unnecessary to rasterize the interior of the implicit ADF glyph in a
// separate step.
//
// (c) After the distances in the distance buffer have been mapped to
// density values as described above in step (7), the adjusted CSM

3C:\Users\perry\Desktop\MERL\SaffronDemos\...\Source\SaffronLib\ADFImplicitFloat.c

// inside and outside filter cutoff values are restored to their
// original values.
//
// Implicit ADF rendering of a stylized stroke-based glyph (i.e, an SSF glyph)
// uses a hybrid of the approaches used for rendering outline-based glyphs and
// uniform-width stroke-based glyphs. Rendering an SSF glyph comprises the
// following steps:
//
// (1) Same as above
// (2) Same as above
// (3) Same as above
//
// (4) Same as above with the following additions: a) corners are detected
// in the SSF glyph and annotated in the SSF internal path; b) unit
// normal vectors are computed from the original stroke path at each
// pen position in the SSF internal path (these unit normal vectors are
// used for generating implicit ADF boundary cells); c) the normalized
// length along each stroke skeleton is computed for each pen position
// in the SSF internal path (the normalized length is used for
// evaluating profiles).
//
// (5) First, stroke bodies are rendered as signed distance fields and
// composited with distances of the previously rendered stroke bodies by
// taking the maximum distance value (i.e., by performing a CSG union
// operation). For each element of the SSF internal path, an implicit
// ADF boundary cell (i.e., a line cell) is generated. The geometry of
// the line cell is determined from its corresponding line segment and
// unit normal vectors and is constructed to enclose all of the sample
// points that may be closest to the line segment and are either inside
// the stroke body or within the filter radius of the edges of the
// stroke body. For each sample point in the line cell, the minimum of
// the closest signed distances to the left and right edges of the
// stroke body is determined from the line segment and the left and
// right stroke profiles of the SSF glyph; this minimum distance is then
// composited with the corresponding distance in the distance buffer by
// taking the maximum distance value. Second, each endcap and corner
// (i.e., each stroke serif) of the SSF glyph is rendered into a small
// temporary distance buffer which is then composited with the main
// distance buffer using a CSG union operation (i.e., by taking the
// maximum distance value for each sample point). For each serif, the
// serif's open path is transformed (i.e., rotated, translated, and
// scaled) to fit the end or corner of the appropriate stroke skeleton,
// and used to generated an implicit ADF of type ADF_OUTLINE_PATH whose
// ADF coordinates are identical to image coordinates (i.e., the
// rendering transform from ADF coordinates to image coordinates is the
// identity matrix). An internal path of type ADF_OUTLINE_PATH, in which
// curve segments of the implicit ADF are approximated by a set of line
// segments, is then created from the implicit ADF. The internal path is
// rendered by first generating an implicit ADF boundary cell for each
// element of the internal path, determining an unsigned distance from
// each sample point inside the ADF boundary cell to the corresponding
// element, and compositing the negative of the unsigned distance with
// the corresponding distance in the temporary distance buffer by taking
// the maximum negative value. The serif's open path is then closed
// (e.g., by connecting each end of an open corner path to the corner
// point for a stroke corner) and the sign of the distance value of each
// sample point inside the closed path is changed from negative to
// positive.
//
// (6) Similar to uniform-width stroke-based glyphs, the interior is
// rendered during step (5), thereby eliminating the need to rasterize
// the interior of the SSF glyph in a separate step.
//
// (7) Same as above
//
// Support for implicit ADF SAZ alignment zone detection consists of a function
// for sampling the distance field of a specified implicit ADF to determine a

4C:\Users\perry\Desktop\MERL\SaffronDemos\...\Source\SaffronLib\ADFImplicitFloat.c

// distance map of size w x h, i.e., a 2D image of floating point distance
// values. During sampling, the [0.0,1.0] x [0.0,1.0] bounding box of the
// implicit ADF is scaled to the [0,w-1] x [0,h-1] distance map.
//
// Implicit ADF validation provides a function for drawing a specified implicit
// ADF and its SAZ alignment zones. This function permits validation of the
// distance field of the implicit ADF glyph and for the placement of its SAZ
// alignment zones. Note that MAZ alignment zones are not supported by this
// function.
//---

