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Abstract best concepts from [4] and [21] with additional features to define
Procedural shading has proven to be an indispensable tool for pro-the RenderMan Shading Language [26], the premier shading lan-
viding photorealistic, photosurrealistic, and artistic effects in com- 9uage in use today. [5, 7, 11, 22] provide hardware support for sim-
puter generated animations. However, due to its computational cost Plified forms of procedural shading. PixelFlow [19] implements a
the time to produce a single frame is measured in hours or days. Infull procedural shading language in hardware, but limited per-pixel
this paper we introducshadermaps, a new method for accelerating ~Mmemory restricts shader complexity. _

procedural shading which exploits inter-frame coherence to signif-  [8] describes a limited method for accelerating procedural shad-

icantly reduce rendering times of animations. ing. Their technique caches non-varying computations of a shader
in screen space and permits a single appearance parameter to
1 Introduction change, reflecting this change interactively. Because the scene must

be rendered prior to the interactive stage, many image properties

Procedural shading has become an indispensable tool for producingy, o1, a5 the eyepoint and the positions and orientations of objects
expressive and compelling computer generated animations. Proceannot be altered.

dural shading’s primary benefit is its flexiblity, since shaders, pro- —\,;merous techniques exist that manipulate data stored in texture
cedures that calculate the appearance of objects in a scene, can bﬁwaps to enable more flexible shading models. Examples of such
arbitrarily complex in their actions. This flexibility h_as its price, techniques range from environment maps [2] and bump maps [3] to
hOW?Ve“. It can take hours or days to render a single frame for & the more recent work on a parameter-space shading method that op-
studio animation. . erates at interactive rates [18], an abstract programmable model for
. Shadermaps are a new mgthod fqr accelgratlng procecjural shad- multi-texturing [16], and a sample based BRDF representation per-
ing, driven by two observations. First, objects tend to hawen- mitting physically accurate reflection models for local illumination
SIC appearances that‘ are consistent from frame to frame,static. . [12]. Similar to shadermaps, [18] includes on-the-fly generation
Second, the intrinsic appearance of an object is usually responsi-i¢ qata in a mipmap, but for a fixed, much more limited shading
ble for most of its visual complexity and its rendering cost. Sha- o |culation. ' '

dermaps accelerate procedural shaders by taking advantage of this Finally, shadermaps require high quality anisotropic filtering as
static complexity. Shader computations are separated into static angjescribeé in [13, 17, 24]

dynamic phases, and the output of the static phase is stored an e

reused from frame to frame. In typical animations, shadermaps can
significantly reduce the cost of procedural shading. 3 Shadermaps
3.1 Background

2 Related Work Shaders model the interaction of light with an infinitesimal area
An early form of procedural shading appears in [15], where the on a surface. The shader is evaluated for a point on the surface and
shading code for the renderer can be rewritten to extend the built-in generates the visible color of that point viewed from a particular
functionality. [27] introduces a more formal approach by defining direction. The sources of input to a shader, knowmagsearance

a shader dispatch table with built-in shaders; their testbed permitsparameters, include local surface properties and lighting and view-
custom shaders to be written, added to the dispatch table, and in-ing conditions. The local surface properties might include the color,
voked by the renderer. [27] also develops the notion of deferred normal, and(u, v) parameterization of the point where the shader
shading, where shading parameters are scan converted, stored, and being evaluated. Lighting conditions include the directions from
used by a later shading pass. [4] converts simple expressions repwhich the surface is lit, and with what intensity. The viewing condi-
resenting shading computations into a parse tree which is then in-tions provide other information about the scene, such as the current
terpreted by the renderer. [4] was the first to organize the shadingeyepoint. Shaders also havetance variables, constants assigned
computations into light, surface, and atmospheric shaders; he alsovhen the shader is created and bound to a surface, which allow
introduced the term appearance parameters, referring to those pamultiple behaviors from a single source description. For example,
rameters that can affect a shading computation. [21] extends [4] an instance variable can be used to adjust the spacing of features on
with his Pixel Stream Editor, permitting a full procedural language a surface.

to be used to express a shading computation. [10] combines the

1There are three primary types of shaders in most procedural shading
*MERL - Mitsubishi Electric Research Laboratory, jones@merl.com, systems: surface, light, and atmospheric. We use “shader” to mean surface
perry@merl.com, callahan@xmission.com shader, though shadermaps can be applied to other types of shaders as well.




3.2 Observations

Most objectsin the real world have intrinsic appearancethat are
consistenbver time. For example,awoodenfigurine hasthe same
grain patternevenwhenviewed from differentanglesor underdif-
ferentlighting conditions. Similarly, procedurallyshadedobjects
in animationdendto have intrinsic appearanceatdo notchange.
This is achieved by keepingsomesubsebf the appearancparam-
etersthatcontrolthe shaderstatic betweerframes.

The conceptof staticand(corversely)dynamicappearancpa-
rametersshouldnot be confusedwith the conceptsof uniform and
varying appearancparameterpresenin mary shadinganguages
[10]. Theformerindicatewhetheranappearancparameteraries
betweenframes,the latter whetherit changesacrossa surface. In
thecaseof thewooderfigurine,thegrainis static,but obviously not
uniform. It is alsoimportantto notethatevenif anobjects geom-
etry changesn someway, appearancparametersrestill staticas
long asthey remainthesamerelative to the (u, v) parameterization.

Anotherobsenationis that,usually for anobjectthatlookscom-
plex, mostof the surfaces (non-geometriccompleity is dueto
the objects intrinsic appearanceatherthan othercausessuchas
lighting. In shadersthis complity resultsin more computation
devotedto determiningtheintrinsic appearancef anobject,rather
thanto lighting or viewing calculations.

There are countergamplesto the abore. Rippling water de-
rivesmostof its compleity from the visual effect on objectsseen
throughit, andthecompleity of asheef paperunderdiscolights
is almostentirelydueto lighting. We do notaddressuchextremes
here,but strive to acceleratéhe morecommoncases.

3.3 Algorithm

It is possibleto accelerat@rocedurakhadingn animationdy tak-
ing adwantageof staticcompleity. We definethe static phase of
ashaderasthe partthatdependnly on staticappearancparam-
eters,andthe dynamic phase asthe remainderof the calculation.
Sincethe computationsn the static phasedependonly on static
appearanc@arametersit is possibleto reusethosecomputations
from one frameto the next. In our algorithm, the output of the
staticphasds generatet multiple resolutionsandstoredin asha-
dermap, a mipmap of intermediatecomputationgndexed by the
surface parameterization. Theseintermediatecomputationsare a
“snapshot”of the interfacebetweerthe staticanddynamicphases
at particularlocationson the surface. For eachframe, it is possible
to reconstructheintermediateeomputatiorat ary pointonthesur
facefrom the shadermaplata. This reconstructions a warp of the
shadermaplatato screerspaceaccordingo the surfaceparameter
izationandgeometry(analogougo warpinga texture map),andis
performedby a high quality anisotropidilter to minimize aliasing.
The dynamicphaseusesthe resultof this reconstructiorto com-
pletethe shadercalculationandproducethe final color. Sincethe
anisotropicwarp is usuallymuchlessexpensve to computethan
an evaluationof the static phase the reuseof staticcomputations
resultsin asignificantacceleratiorof the shadingcalculation.

Most objectsarerenderedaspolygonsor patcheshothof which
have inherenttwo-dimensionalpiecavise parameterizations!f a
single parameterizationver the entire objectdoesnot exist, these
local parameterizationgnableperpatch shadermapsat a mini-
mum. Therearealsotechniquedor creating(u, v) parameteriza-
tionsover entireobjects[14].

Someshadergeneratehe color for a point basedon the three-
dimensionalposition of that point, so that surfaces effectively
“carve” theirappearancesimilarto three-dimensionakxturemap-
ping. Shadermapsanstill be usedwith theseshaderssince(u, v)
determineshree-dimensiongosition,andby extension theoutput
of thestaticphase.

Oneof the benefitsof procedurakhadingis resolutionindepen-
dence;a shadercanhave detail at a wide rangeof scales.Generat-

ing shadermaplatafor all of thesescalesvould be wasteful,since
in ary single frame the dynamic phaserequiresonly part of the
datafrom theshadermapTo avoid excesscomputationshadermap
datais generate@dn demandat theresolutionsandlocationsneces-
saryto renderthe currentframe,andstoredin a sparselypopulated
mipmap. The methodof storageandgeneratioris discussedn the
next section.

In somecasesshadermapsanbe appliedto computationghat
arenot part of the intrinsic appearancef anobject. For example,
if anobjectis viewedunderstaticlighting conditions thenmuchof
thelighting calculationwill bestaticandcanbeacceleratedia sha-
dermapsThedelineatiorbetweerthestaticanddynamicphase®f
a shaderdependson the context of the animationthat the shader
is usedin. In anextremecase the lighting on an objectcould be
staticwhile theappearancparametersiffectingsurfacecolor were
changecdtachframe.In this caseonly thelighting calculationcould
beacceleratethy shadermapgyppositethe morecommonacceler
ationof the surfacecolor computation.

3.4 Shader and Renderer Changes

From a shaderwriter’s point of view, it is not difficult to adapta
shaderto useshadermapsFirst, the shaderis factoredinto static
and dynamic phasesby hand. The static phasebecomesa sha-
dermap shader, returningits outputin somenumberof channels
to bestoredin ashadermajy therendererandthe dynamicphase
is modified to accesshis shadermams if it were simply a tex-
ture mapcontainingarbitrarydata. An exampleshadetis shavn in
AppendixA, bothin its original form andfactoredinto staticand
dynamicphases.

Few changedo therenderemrenecessaryagainbecausef the
similarity betweenshadermapand textures,andalsobecausehe
dynamicphasesimply replacesheunfactoredshaderTherenderer
rasterizegor otherwisesamplespeometryandappearancparam-
etersin screenspace,calling the dynamic phaseat eachsample
point. Thedynamicphaseaccessethe shadermaplataasif it were
a texture, using an anisotropicfilter to recreatethe output of the
staticphaseat thatpoint, from which it completeghe shadingcal-
culationto producea color. Figurel shavs a comparisonof the
dataflav for atraditionalshadeandfor ashadeusingshadermaps.
The dynamicphasetakes the place of the unfactoredshaderand
theshadermajs similar to a cachebetweerthe dynamicandstatic
phases.

To avoid unnecessargomputationthe datain the shadermajis
generatebn demand. If the anisotropicfilter operationrequires
shadermaplatathathasnotyetbeencreatedtheshadermaghader
(i.e., the static phase)is invoked to producethe neededdata,and
theresultstoredin the shadermayor future computations.To re-
ducethe overheadf on-demandjenerationshadermaparestored
in a sparsemipmapmadeup of tiles, and datafor an entiretile is
generatedvhenthattile is first accessedSincethe datain a sha-
dermapis producedatseveralresolutionsit is similarto amipmap.
Unlike mipmaps however, the datais generatedlirectly by a pro-
cedureratherthanlower-resolutionlevelsbeingfilteredversionsof
ahigherresolutionimage.

Theoptimalsizefor ashadermatile depend®nseveralfactors,
not the leastbeingthe accesgatternof the shadermapvhich de-
pendson the animationin non-olvious ways. Good resultshave
beenachiezed with tile sizesbetween8 x 8 and64 x 64, but anin-
depthanalysisof the effect of tile sizeon speedchasnot beenper
formed.

Notethatwhenusinganunfactoredshadera procedurakhading
systemmust rasterizeall of the appearancg@arameterghat con-
tribute to the shadingcomputation.Whenusingshadermapsnly
the dynamicappearanc@arametersnd (u, v) needto be raster
ized. This alonecanbea significantreductionin computation.
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The dynamicphases only accesgo the shadermaplatais via the

anisotropicfilter. A requestfor the dataat a given (u, v) results
in the filter beingappliedto a setof samples,eachat a different

(u,v) locationin the shadermap.The distinction is denotedby

(u, V) screen @ANA(W, V) shadermap (SEEFigurel). Notethatbecause
the shadermayjis evaluatedat grid locations(similar to a mipmap),

it is unlikely thatary one (u, v)shadermap COrrespondsxactly to

theoriginal (u, v) screen -

3.6 Antialiasing in the Static Phase

Most shaderssupportantialiasingby automaticallybandlimiting
the signalthey generatebasedon the screen-spacederivatives of
appearanc@arameterg6]. Suchtechniquedranslateseamlessly
to shadermapssincethe derivativesof anappearancparametein
(u, v) spacewherethestaticphaseoperatesganbecalculatedriv-
ially duringthatappearancparametes interpolation.lt is impor-
tantto notethatthe staticphaseof the shadeiis responsibldor an-
tialiasingthe datathatappearsn the shadermapThis is analagous
to anunfactoredshadebeingresponsibldor antialiasingts output
in screerspace.With shadermapghe anisotropidfilter minimizes
aliasingduringthe warp of the shadermaplatato screenspace.In
effect, the combinationof antialiasingn the staticphaseandin the
anisotropidilter antialiaseslatain screerspace.

4 Results

4.1 Acceleration

There are three factorsthat determinethe effectivenessof sha-
dermapsat acceleratingoroceduralkhadingcalculations:reuseof
shadermaplata,the costof the staticphaseandthe costof recon-
structingtheintermediatecomputation.

The amountof reuseof shadermaplatafor an animationis the
ratio of the total numberof evaluationsof the dynamicphaseto
total numberof evaluationsof the staticphase A ratio of 10:1,for
example,meansthat for every ten evaluationsof the shaderi.e.,
the dynamicphase) the staticphaseis evaluatedonly once. This
ratio doesnot dependon the particularshademappliedto an object,
but ratheron thedirectionsfrom which the objectis renderedalong
with the object’s surfaceparameterizatiomnd geometry Table 1
shaws evaluationcountsandratiosfor severalanimations.

A frame from the Bowling animation(inspired by “Textbook
Strike” from the cover of [26]) is shavn in Figure2, the Spinning
animationis of rotatingteapot,andWalking is a first personwalk
down a hallway. As canbe seenreuseof shadermalatais high,
with mostratiosaround15:1, or about95% reuse. This hasbeen
thecasen all animationghatwe have generated.

Thecostof reconstructiorf theintermediateceomputatioris the
next most significantfactor governing shadermapg’ effectiveness.

Animation Object Shader StaticPhase| Ratio
Evaluations| Evaluations
Bowling Floor | 3.2 x 107 1.7x10° [19:1
Pins 6.8x107 | 54x10° | 13:1
Ball 1.2 x 107 50x10° | 24:1
Spinning  Teapot| 2.1 x 107 2.6 x 10° [ 8:1
Floor | 9.7x10° | 2.7x10° | 36:1
Walking Walls 1.0 x 10 12x10" [ 8:1
Tablel: Numberof shademandstaticphasesvaluations
Shader| Static | Overhead| Numberof | Reconstruction
Phase Channels | Cost(Isotropic)
Floor 280 0 3 60
Pins 20 50 3 60
Ball 130 40 1 20

Table2: ApproximateFLOP countsfor shaders

We usethe FELINE algorithm,which constructsananisotropidil-

ter asaweightedsumof a setof trilinear “probes’ The probesare
takenalongthe majoraxis of theellipseformedby projectinga cir-
cular pixel window to the surface. Furtherdetailscanbe found in

[17].

Thecostof the FELINE reconstructioris dominatedy theeval-
uationof trilinear probes. The numberof probesusedin a single
evaluationof FELINE depend®on the anisotroy of the surfacein
screenspace. We estimatethe costof a single probeto be =~ 20
FLOPS,pershadermaghannel.Note, however, thatthe computa-
tion of trilinear probess highly regularandamenabléo paralleliza-
tion; significantspeedupganbe achieved by taking adwantageof
modernprocessorenhancementsuchas Intel's StreamingSIMD
Extensionsor the Alpha processos deepfloating-pointpipelines.

The savings dueto shadermapslso dependon the costof the
staticphasejncludingary overheadnducedby factoring. Table2
givestheresultsof a handanalysisof the shaderaisedto generate
the Bowling animation.

TheFloor shadeiis similar to the oakplank shademivenin [1].
It involves several calls to expensve shadinglanguagefunctions,
suchasnoi se. The boundarybetweenthe static and dynamic
phasess threevariableswhich control the grain of the wood, its
shininessandthelinesbetweerplanks.TheBall shadeis aclassic
turbulencefunctionmodulatedoy a color spline,with a singlevari-
ablelinking the staticanddynamicphasesFinally, the Pin shader
(basedon [26]) is fairly simple,involving classificationof the pin
surfaceinto regions (base,body crown) by three-spaceosition,
andtheuseof texture mapsfor thelabelsandscratchesnthepins.
The intermediatecomputationis simply the pin’s intrinsic surface
color.

The valuesin the Overhead columnin Table?2 arefrom the ex-
tra effort necessaryo corvert (u, v) into three-space@osition for



Shader| StaticPhase| Shadermaps
(Unfactored)| (Factored)

Floor 280 165

Ball 130 57

Table 3: Comparison(FLOP count) of unfactoredversusfactored
staticphases

the two latter shaders,which “carve” appearancérom a three-
dimensionafunction. This overheadpartof the staticphasejs not

necessaryn unfactoredshaderdecausehree-spacgositionis al-

readycalculatedn thenormalcourseof rendering.Sincethe static
phasds not evaluatedat exactly the samelocationsasthe dynamic
phasg(§3.5), it mustcalculatethree-spacgositionindependently
This calculationcanbe expensve, requiringcalls to trigonometric
functions,but its effect on the overall computationis significantly
reducedbecausef thehigh reuseof shadermaplata.

The Reconstruction Cost columnshaws the costof reconstruct-
ing theintermediatecomputationjgnoringanisotroy. From Table
2, it is obvious that someshaderssuchas Pins, costso little to
evaluatethatthey do notbenefitfrom shadermaps.

Finally, Table3 compareghe costof the staticphasein anun-
factoredshadeto thecostwhenthis phaséds acceleratedsingsha-
dermapsTheformulafor thelatterisC = R x A+ (G + O)/U,
whereR is the costof anisotropicreconstructiorof the interme-
diate computation,A the averageanisotroy (2.5 for the Bowling
animation),G the costof an evaluationof the staticphase,O the
overheadfrom factoring,andU theratio from Table1. As noted
above, the pin shadedoesnot benefitfrom shadermaps.

A directcomparisorof anunfactoredshademndthatof ashader
usingshadermapis very context dependentTheoverall costof ei-
thermethoddepend®on the compleity of thedynamicphase.Un-
dersimplelighting conditions shadermapsanreducetotal shading
computationgo a fraction of their original number However, the
relative improvementis diminishedasthe dynamicphasebecomes
moreexpensve.

Frominspectionof theformulaabove andtheresultsin Table3,
it canbe seenthatthe computationatostof shadermapss domi-
natedby anisotropicreconstructionThe othercosts,from evalua-
tion of the staticphaseandthe overheadrom factoring,areattenu-
atedby the high reuseof shadermaplata. Thus,shadermapallow
theuseof significantlymorecomplicatedstaticphasecomputations
without alargeincreasen shadingcost.

4.2 Quality Comparison

A side-by-sidecomparisorof imagesgeneratedvith and without
shadermapss givenin Figure2. Thoughsubtlevariationsexist,
thereis novisible differencein quality. (The sourceof thesevaria-
tionsis discussedh the next section.)

Figure 3 shavs framesfrom the Bowling animationshadedac-
cordingto theageof theshadermaplataaccesseduringrendering,
with brighterareasyounger

4.3 Approximation and Error

Shadermapdo not exactly reproducehe outputof the shadethey
arederivedfrom, sincethewarpto screerspacempliesalossof ac-
curag. In mostcasesthe approximationis visually indistinguish-
able,but therearesituationswhereit causesncorrectresults.If the
dynamicphases highly nonlineay minorerrorscouldresultin large
changesin appearanceprecludingthe use of shadermaps.This
problemis not uniqueto shadermapshump maps[3], for exam-
ple, do not rendercorrectlywhenfiltered directly becausef their
nonlinearinteractionwith lighting [23, 20].

5 Discussion and Future Work

It might be possibleto automaticallyfactorshadersisingdataflav
analysisasin [8], or simplify handfactoringby addinga syntactic

device, suchasa static keyword, to the shadinglanguage. How-
ever, a benefitof explicit factoringis thatit gives more control to
theshademvriter, aswell asallowing staticanddynamicphasepro-
cedurego bereusedseparatelyandsharedbetweernobjectssimul-
taneously

It is interestingto considerthe amountof memoryrequiredto
supportshadermapsAn upperboundof memoryaccessedvhile
renderinga single frame (the minimum requirement)s given by
multiplying the numberof pixels (=~ 2 Mpixels), the averagesize
of the intermediatecomputationsstoredin a shadermap~ 10
bytes/shadermagample).andthe averageperpixel anisotroy af-
ter the warpto screenspace(~ 2-3 shadermagamples/pigl). If
the renderersupportstranspareng the depthcompleity (= 10)
alsocontritutes,but optimizationsfor opaqueobjectsapply These
quantitiesall vary considerablyandin somecaseshememorycost
mightbe solargeasto requirecachereplacemenstratgiesor pre-
cludetheuseof shadermapaltogether

Shadermapbave potentialapplicationsbeyond acceleratiorof
software proceduralshading. So far, hardware systemsimple-
mentingprocedurakhading19] have beenlimited in functionality
largely becausef the perpixel memoryrequiredto storeappear
anceparametersndintermediatevaluesthroughoutshadercalcu-
lations. Shadermapseducethe numberof appearancparameters
that needto be rasterizedand canalso actto simplify the shader
computationpothof whichreducememoryrequirementsOn such
systemsshadermapwould allow theuseof morecomplex shaders
without a perpixel memoryincrease.

Shadermapmight alsoapply to morecommonhardware. One
view of shadermapis asdynamicallygeneratedexture mapscon-
taining arbitrary data. The dynamic phasecan likewise be seen
asa complex multitexturing engine. Interestingly consumetevel
graphicshardwareis alreadymoving in directionscompatiblewith
theseinterpretations. PC graphics cards with supportfor on-
demandoadingof partial texturesfrom systemmemoryhave re-
centlybecomeavailable[28]. Adaptingthis technologyto dynam-
ically generateddatais concevable, though methodsfor dealing
with “cachemisses”would be necessaryasin [25]. Concurrently
increasinglycomplex multitexturing graphicsengineshave been
proposed12, 16] andthetrendin consumehardwarehasalsobeen
towardsmorepawerful multitexturing [9]. Theadwancedromthese
two areascombinedwith shadermappointto a possibleshortcutto
powerful procedurashadingon consumeievel graphicshardvare.
However, someproblemsremainto be solved. Texture memories
are usually smallerthanthoseof generalpurposeCPUs,so care-
ful cachemanagemenand replacemenstratgies would have to
be devised. Shadermapalsoincreasehe bandwidthrequirements
of texture memory an alreadystrainedresource However, the ad-
vent of embeddeddRAM might remove this limitation. Finally,
the staticevaluationsincreasethe load onthe hostCPU, or require
asecondyeneralpurposeprocessodedicatedo thistask.

Anotherpossibilityis to usehardwareto acceleratéhe mostex-
pensve part of shadermapsthe reconstructiorcalculation,while
continuingto performthe otherrenderingandshadingcalculations
in software. Sucha “reconstructionaccelerator'would be much
simpler than most graphicsacceleratorsgonsistingof not much
more than an anisotropicfiltering engineand memoryfor storing
theshadermaps.

In conclusionshadermapacceleratgrocedurakhadingby ex-
ploiting inter-framecoherenceo reducecomputation. Shadermaps
enablethe use of much more complex shaderswithout a corre-
spondingncreaseén shadingime sincethe costof shadings amor
tizedoverseveralframes.Furthermoreshadermapecastheshad-
ing computatiorinto a form which is amenabléo hardwareaccel-
eration, potentially providing a leapin quality in consumetevel
graphics.
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The

A Example Shader

Ther i ngs shader below is a simplified shader for a wooden object prior to factoring,
written in the RenderMan shading language. It simulates wood as nested cylinders
with a periodically varying color, from which surfaces take their appearance. The cal-
culation takes place in a local shader space, so that when the associated object moves,
the rings stay in the same position on the object. The position within a ring determines
the color of a point and its shininess; darker parts of the wood appear shinier.

The boundary between the static and dynamic phases of the shader is marked in the
code, under the assumption that this shader is used in the typical way, i.e. associated
with an object with fixed geometry.

This shader is much simpler than most. For instance, there is no code to handle
antialiasing, opacity, or ambient light. The static phase would typically be much more
complicated, with calls to expensive functions suchhasse, and a more elaborate
color mappirg performel with spl i ne.

ri ngs requiresthat two built-in appearaneparametesbeinterpolatedthe normal
N and the position P. P is used in the ring color computation, and both N and P are
used in the lighting calculation (P is an implicit parameter in the caliditbf use
andspecul ar.)

surface
rings(float Ks = .6, Kd =
roughness
col or |ightwood
dar kwood =
specul arcol or =

. 6,
.1
color (.69,
color (.35,
1;)

.44,
.22,

. 25),
.08),

poi nt PP;

float dist;

normal Nf;

*/

/* Transform position P to | ocal shader

PP = transforn{"shader", P);

space.

/* Find the distance fromPP to the line z = 0. */
di st = sqrt(xconmp(PP)*xconmp(PP) +

yconp(PP) *yconmp(PP));
/* Make rings fromfractional */
dist -= floor(dist);
/* ...and use it to linearly blend wood col ors.
C = mx(lightwood, darkwood, dist);

part of dist...

*/

STATI C/ DYNAM C BOUNDARY */

Miltiply this color by the diffuse lighting. */
= faceforward (nornalize(N),1);
*= Kd*di ffuse(Nf);

/*
/*
/*

Add the specul ar highlight, attenuated by ring
position. Darker areas have brighter specul ar
hi ghl i ghts.
+= dist * specularcolor * Ks *

specul ar (Nf, -nornal i ze(1), roughness);

rings can be replaced with the two shaders below,ngs_static and
ri ngs_dynam c, joined by a shadermap storing the intermediate computations, rep-
resented by Ci and dist. The shadermap storage will have been defined in the scene
description before these procedures are invoked. The definition includes a name to
reference the shadermap and the number and type of each element of the shadermap
(a color and a float, in this example). The code below borrows the syntax of the Ren-
derMan shading language, introducing the new functishader map_st or e and
shader map along with a new shader typghader map_shader .

The shadermap shader ngs_st at i ¢ performs the static phase of thé ngs
shader. Its output is stored in a shadermap, referenced by naimegs. st ati c
uses the built-in appearance parameter P, which must be interpolated based on the
current (u,v). Theshader map_st or e function takes (u,v) as an implicit argument,
specifying the location at which to store its data.

shader map_shader
rings-static(string shader map_nane;
color lightwod = color (.69,

= .44,
darkwood = color (.35,

.22,

. 25),
.08)3)

poi nt PP;
float dist;

PP = transforn{"shader", P);

di st = sqgrt(xconmp(PP)*xconp(PP) +
yconp(PP) *yconp(PP))
dist -= floor(dist);



C = mx(lightwood, darkwood, dist); /* Reconstruct the internediate results fromthe */
/* shadermap. As in the texture function, (u,v) for */

/* Store intermediate results in the shadermap. */ /* the current point is an inplicit argunent to the */

/* The (u,v) location to store the data at is an */ /* shadermap function. shadermap is responsible */

/* inmplicit argunent. */ /* for performng the anisotropic filter of the */

shader map_st or e( shader nep_nanme, 0, dist); /* shadermap data as well as handling the on-denmand */

shader map_st or e( shader map_nanme, 1, C); /* generation of that data. */
} di st = float shader map(shader map_nane, 0);

C = col or shader map(shader map_-nane, 1);
Thesurfaceshader i ngs_dynam c performsthedynamicphaseof ther i ngs

shaderlt first reconstructsheoutputof the staticphasethroughcallsto shader map. /* Conpl ete the shader conputation *1
It thenperformsthe lighting calculationwhich completeshe shadercomputation. Nf = faceforward (normalize(N),!I);
G *= Kd*di ffuse(Nf);
surf ace C += dist * specul arcol or * Ks *
rings.dynam c(string shader map_name; specul ar (Nf, -nornal i ze(1), roughness);
float Ks = .6, Kd = .6, 3
roughness = .1;
col or specularcolor = 1;)
normal Nf;
float dist;

Figure2: Imagesgenerateavith shadermap§eft) andwithout shadermapgight)

Figure3: Framedsrom the Bowling animation.Pixelsareshadedaccordingto the ageof theshadermaplataaccesseduringrenderingwith
brighterareasyounger Thebrightline onthefloor is dueto the cameras forward movement.



