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Shadermaps: A Method For Accelerating Procedural Shading

Thouis R. Jones, Ronald N. Perry, Michael Callahan
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Abstract
Procedural shading has proven to be an indispensable tool for pro-
viding photorealistic, photosurrealistic, and artistic effects in com-
puter generated animations. However, due to its computational cost,
the time to produce a single frame is measured in hours or days. In
this paper we introduceshadermaps, a new method for accelerating
procedural shading which exploits inter-frame coherence to signif-
icantly reduce rendering times of animations.

1 Introduction
Procedural shading has become an indispensable tool for producing
expressive and compelling computer generated animations. Proce-
dural shading’s primary benefit is its flexiblity, since shaders, pro-
cedures that calculate the appearance of objects in a scene, can be
arbitrarily complex in their actions. This flexibility has its price,
however. It can take hours or days to render a single frame for a
studio animation.

Shadermaps are a new method for accelerating procedural shad-
ing, driven by two observations. First, objects tend to haveintrin-
sic appearances that are consistent from frame to frame, orstatic.
Second, the intrinsic appearance of an object is usually responsi-
ble for most of its visual complexity and its rendering cost. Sha-
dermaps accelerate procedural shaders by taking advantage of this
static complexity. Shader computations are separated into static and
dynamic phases, and the output of the static phase is stored and
reused from frame to frame. In typical animations, shadermaps can
significantly reduce the cost of procedural shading.

2 Related Work
An early form of procedural shading appears in [15], where the
shading code for the renderer can be rewritten to extend the built-in
functionality. [27] introduces a more formal approach by defining
a shader dispatch table with built-in shaders; their testbed permits
custom shaders to be written, added to the dispatch table, and in-
voked by the renderer. [27] also develops the notion of deferred
shading, where shading parameters are scan converted, stored, and
used by a later shading pass. [4] converts simple expressions rep-
resenting shading computations into a parse tree which is then in-
terpreted by the renderer. [4] was the first to organize the shading
computations into light, surface, and atmospheric shaders; he also
introduced the term appearance parameters, referring to those pa-
rameters that can affect a shading computation. [21] extends [4]
with his Pixel Stream Editor, permitting a full procedural language
to be used to express a shading computation. [10] combines the
Ç
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best concepts from [4] and [21] with additional features to define
the RenderMan Shading Language [26], the premier shading lan-
guage in use today. [5, 7, 11, 22] provide hardware support for sim-
plified forms of procedural shading. PixelFlow [19] implements a
full procedural shading language in hardware, but limited per-pixel
memory restricts shader complexity.

[8] describes a limited method for accelerating procedural shad-
ing. Their technique caches non-varying computations of a shader
in screen space and permits a single appearance parameter to
change, reflecting this change interactively. Because the scene must
be rendered prior to the interactive stage, many image properties
such as the eyepoint and the positions and orientations of objects
cannot be altered.

Numerous techniques exist that manipulate data stored in texture
maps to enable more flexible shading models. Examples of such
techniques range from environment maps [2] and bump maps [3] to
the more recent work on a parameter-space shading method that op-
erates at interactive rates [18], an abstract programmable model for
multi-texturing [16], and a sample based BRDF representation per-
mitting physically accurate reflection models for local illumination
[12]. Similar to shadermaps, [18] includes on-the-fly generation
of data in a mipmap, but for a fixed, much more limited shading
calculation.

Finally, shadermaps require high quality anisotropic filtering as
described in [13, 17, 24].

3 Shadermaps
3.1 Background
Shaders1 model the interaction of light with an infinitesimal area
on a surface. The shader is evaluated for a point on the surface and
generates the visible color of that point viewed from a particular
direction. The sources of input to a shader, known asappearance
parameters, include local surface properties and lighting and view-
ing conditions. The local surface properties might include the color,
normal, andÈ¹É�Ê·Ë*Ì parameterization of the point where the shader
is being evaluated. Lighting conditions include the directions from
which the surface is lit, and with what intensity. The viewing condi-
tions provide other information about the scene, such as the current
eyepoint. Shaders also haveinstance variables, constants assigned
when the shader is created and bound to a surface, which allow
multiple behaviors from a single source description. For example,
an instance variable can be used to adjust the spacing of features on
a surface.

1There are three primary types of shaders in most procedural shading
systems: surface, light, and atmospheric. We use “shader” to mean surface
shader, though shadermaps can be applied to other types of shaders as well.



3.2 Observations
Most objectsin the real world have intrinsic appearancesthat are
consistentover time. For example,a woodenfigurinehasthesame
grainpatternevenwhenviewedfrom differentanglesor underdif-
ferent lighting conditions. Similarly, procedurallyshadedobjects
in animationstendto haveintrinsicappearancesthatdonotchange.
This is achievedby keepingsomesubsetof theappearanceparam-
etersthatcontroltheshaderstatic betweenframes.

Theconceptsof staticand(conversely)dynamicappearancepa-
rametersshouldnot beconfusedwith theconceptsof uniform and
varying appearanceparameterspresentin many shadinglanguages
[10]. Theformer indicatewhetheranappearanceparametervaries
betweenframes,the latter whetherit changesacrossa surface. In
thecaseof thewoodenfigurine,thegrainis static,but obviouslynot
uniform. It is alsoimportantto notethateven if anobject’s geom-
etry changesin someway, appearanceparametersarestill staticas
longasthey remainthesamerelativeto the È¹É�Ê·Ë*Ì parameterization.

Anotherobservationis that,usually, for anobjectthatlookscom-
plex, most of the surface’s (non-geometric)complexity is due to
the object’s intrinsic appearanceratherthanothercauses,suchas
lighting. In shaders,this complexity resultsin morecomputation
devotedto determiningtheintrinsic appearanceof anobject,rather
thanto lighting or viewing calculations.

There are counterexamplesto the above. Rippling water de-
rivesmostof its complexity from thevisualeffect on objectsseen
throughit, andthecomplexity of asheetof paperunderdiscolights
is almostentirelydueto lighting. Wedonotaddresssuchextremes
here,but strive to acceleratethemorecommoncases.

3.3 Algorithm
It is possibleto accelerateproceduralshadingin animationsby tak-
ing advantageof staticcomplexity. We definethe static phase of
a shaderasthepart thatdependsonly on staticappearanceparam-
eters,and the dynamic phase as the remainderof the calculation.
Sincethe computationsin the static phasedependonly on static
appearanceparameters,it is possibleto reusethosecomputations
from one frame to the next. In our algorithm, the output of the
staticphaseis generatedatmultiple resolutionsandstoredin asha-
dermap, a mipmapof intermediatecomputationsindexed by the
surfaceparameterization.Theseintermediatecomputationsare a
“snapshot”of the interfacebetweenthestaticanddynamicphases
at particularlocationson thesurface.For eachframe,it is possible
to reconstructtheintermediatecomputationatany pointon thesur-
facefrom theshadermapdata.This reconstructionis a warpof the
shadermapdatato screenspaceaccordingto thesurfaceparameter-
izationandgeometry(analogousto warpinga texturemap),andis
performedby a high quality anisotropicfilter to minimizealiasing.
The dynamicphaseusesthe resultof this reconstructionto com-
pletethe shadercalculationandproducethefinal color. Sincethe
anisotropicwarp is usuallymuch lessexpensive to computethan
an evaluationof the staticphase,the reuseof staticcomputations
resultsin asignificantaccelerationof theshadingcalculation.

Mostobjectsarerenderedaspolygonsor patches,bothof which
have inherenttwo-dimensionalpiecewise parameterizations.If a
singleparameterizationover theentireobjectdoesnot exist, these
local parameterizationsenableper-patch shadermaps,at a mini-
mum. Therearealsotechniquesfor creating È¹É�Ê·Ë*Ì parameteriza-
tionsover entireobjects[14].

Someshadersgeneratethecolor for a point basedon the three-
dimensionalposition of that point, so that surfaceseffectively
“carve” theirappearance,similar to three-dimensionaltexturemap-
ping. Shadermapscanstill beusedwith theseshaders,since È¹É�Ê·Ë*Ì
determinesthree-dimensionalposition,andbyextension,theoutput
of thestaticphase.

Oneof thebenefitsof proceduralshadingis resolutionindepen-
dence;a shadercanhave detailat a wide rangeof scales.Generat-

ing shadermapdatafor all of thesescaleswould bewasteful,since
in any single frame the dynamicphaserequiresonly part of the
datafrom theshadermap.To avoid excesscomputation,shadermap
datais generatedondemandat theresolutionsandlocationsneces-
saryto renderthecurrentframe,andstoredin a sparselypopulated
mipmap.Themethodof storageandgenerationis discussedin the
next section.

In somecases,shadermapscanbeappliedto computationsthat
arenot part of the intrinsic appearanceof anobject. For example,
if anobjectis viewedunderstaticlighting conditions,thenmuchof
thelighting calculationwill bestaticandcanbeacceleratedvia sha-
dermaps.Thedelineationbetweenthestaticanddynamicphasesof
a shaderdependson the context of the animationthat the shader
is usedin. In an extremecase,the lighting on an objectcould be
staticwhile theappearanceparametersaffectingsurfacecolorwere
changedeachframe.In thiscaseonly thelighting calculationcould
beacceleratedby shadermaps,oppositethemorecommonacceler-
ationof thesurfacecolorcomputation.

3.4 Shader and Renderer Changes

From a shaderwriter’s point of view, it is not difficult to adapta
shaderto useshadermaps.First, the shaderis factoredinto static
and dynamicphasesby hand. The static phasebecomesa sha-
dermap shader, returningits output in somenumberof channels
to bestoredin ashadermapby therenderer, andthedynamicphase
is modified to accessthis shadermapas if it were simply a tex-
turemapcontainingarbitrarydata.An exampleshaderis shown in
AppendixA, both in its original form andfactoredinto staticand
dynamicphases.

Few changesto therendererarenecessary, againbecauseof the
similarity betweenshadermapsandtextures,andalsobecausethe
dynamicphasesimply replacestheunfactoredshader. Therenderer
rasterizes(or otherwisesamples)geometryandappearanceparam-
etersin screenspace,calling the dynamicphaseat eachsample
point. Thedynamicphaseaccessestheshadermapdataasif it were
a texture, usingan anisotropicfilter to recreatethe output of the
staticphaseat thatpoint, from which it completestheshadingcal-
culation to producea color. Figure1 shows a comparisonof the
dataflow for atraditionalshaderandfor ashaderusingshadermaps.
The dynamicphasetakes the placeof the unfactoredshader, and
theshadermapis similar to a cachebetweenthedynamicandstatic
phases.

To avoid unnecessarycomputation,thedatain theshadermapis
generatedon demand. If the anisotropicfilter operationrequires
shadermapdatathathasnotyetbeencreated,theshadermapshader
(i.e., the staticphase)is invoked to producethe neededdata,and
the resultstoredin the shadermapfor futurecomputations.To re-
ducetheoverheadof on-demandgeneration,shadermapsarestored
in a sparsemipmapmadeup of tiles, anddatafor an entiretile is
generatedwhenthat tile is first accessed.Sincethe datain a sha-
dermapis producedatseveralresolutions,it is similar to amipmap.
Unlike mipmaps,however, thedatais generateddirectly by a pro-
cedure,ratherthanlower-resolutionlevelsbeingfilteredversionsof
a higher-resolutionimage.

Theoptimalsizefor ashadermaptile dependsonseveralfactors,
not the leastbeingthe accesspatternof the shadermapwhich de-
pendson the animationin non-obvious ways. Good resultshave
beenachieved with tile sizesbetweenÍ]Î­Í and Ï3ÐcÎ­Ï3Ð , but an in-
depthanalysisof theeffect of tile sizeon speedhasnot beenper-
formed.

Notethatwhenusinganunfactoredshader, aproceduralshading
systemmust rasterizeall of the appearanceparametersthat con-
tribute to theshadingcomputation.Whenusingshadermaps,only
the dynamicappearanceparametersand È¹É�Ê·Ë*Ì needto be raster-
ized.This alonecanbea significantreductionin computation.
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Figure1: Dataflow diagramsfor a traditionalshaderanda shaderusingshadermaps.On the right, the shaderhasbeenseparatedinto its
dynamicandstaticphases.Theshadermapis similar to a cachebetweenthe two phases.Thoughnot shown, the È¹É�Ê�Ë*Ì±Ñ5Ò±Ó�Ô±Ô±Õ anddynamic
appearanceparametersinclude screen-spacederivatives, necessaryfor the anisotropicfilter. The È¹É�Ê·Ë*Ì Ñ·Öm×mØ�Ô±Ó�Ù­×�Ú and static appearance
parametersinclude È¹É�Ê·Ë*Ì spacederivatives,usedfor antialiasing.

3.5 Û�Ü­Ý�Þ�ß�à�á±âmã�ã·ä vs Û�Ü­Ý�Þ�ß�à�å,æ8ç�ã·â�è�æ�é
Thedynamicphase’s only accessto theshadermapdatais via the
anisotropicfilter. A requestfor the dataat a given È¹É�Ê·Ë*Ì results
in the filter beingappliedto a setof samples,eachat a differentÈ¹É�Ê·Ë*Ì location in the shadermap.The distinction is denotedbyÈ¹É�Ê·Ë*Ì±Ñ5Ò±Ó�Ô±Ô±Õ and È¹É�Ê·Ë*Ì Ñ·Öm×mØ�Ô±Ó�Ù­×�Ú (seeFigure1). Notethatbecause
theshadermapis evaluatedat grid locations(similar to a mipmap),
it is unlikely that any one È¹É�Ê·Ë*Ì Ñ·Öm×mØ�Ô±Ó�Ù­×�Ú correspondsexactly to
theoriginal È¹É�Ê·Ë*Ì±Ñ5Ò±Ó�Ô±Ô±Õ .
3.6 Antialiasing in the Static Phase
Most shaderssupportantialiasingby automaticallybandlimiting
the signal they generatebasedon the screen-spacederivatives of
appearanceparameters[6]. Suchtechniquestranslateseamlessly
to shadermaps,sincethederivativesof anappearanceparameterinÈ¹É�Ê·Ë*Ì space,wherethestaticphaseoperates,canbecalculatedtriv-
ially duringthatappearanceparameter’s interpolation.It is impor-
tantto notethatthestaticphaseof theshaderis responsiblefor an-
tialiasingthedatathatappearsin theshadermap.This is analagous
to anunfactoredshaderbeingresponsiblefor antialiasingits output
in screenspace.With shadermaps,theanisotropicfilter minimizes
aliasingduringthewarpof theshadermapdatato screenspace.In
effect, thecombinationof antialiasingin thestaticphaseandin the
anisotropicfilter antialiasesdatain screenspace.

4 Results
4.1 Acceleration
There are three factors that determinethe effectivenessof sha-
dermapsat acceleratingproceduralshadingcalculations:reuseof
shadermapdata,thecostof thestaticphase,andthecostof recon-
structingtheintermediatecomputation.

Theamountof reuseof shadermapdatafor an animationis the
ratio of the total numberof evaluationsof the dynamicphaseto
total numberof evaluationsof thestaticphase.A ratio of 10:1,for
example,meansthat for every ten evaluationsof the shader(i.e.,
the dynamicphase),the staticphaseis evaluatedonly once. This
ratio doesnot dependon theparticularshaderappliedto anobject,
but ratheron thedirectionsfrom which theobjectis renderedalong
with the object’s surfaceparameterizationandgeometry. Table1
shows evaluationcountsandratiosfor severalanimations.

A frame from the Bowling animation(inspiredby “Textbook
Strike” from thecover of [26]) is shown in Figure2, theSpinning
animationis of rotatingteapot,andWalking is a first personwalk
down a hallway. As canbeseen,reuseof shadermapdatais high,
with mostratiosaround15:1, or about95% reuse.This hasbeen
thecasein all animationsthatwe have generated.

Thecostof reconstructionof theintermediatecomputationis the
next most significantfactor governing shadermap’s effectiveness.

Animation Object Shader StaticPhase Ratio
Evaluations Evaluations

Bowling Floor êgë ì Î
í�î,ï íeë ð Î
í�îeñ í�ò ó%í
Pins Ïgë Í�Î
í�î,ï ôqë Ð.Î
í�îeñ í�ê ó%í
Ball íeë ì Î
í�î ï ôqë î�Î
í�î,õ ì8Ð�ó%í

Spinning Teapot ìqë í�Î
í�î ï ìqë Ï�Î
í�î ñ Í ó%í
Floor ògë ð Î
í�îeñ ìqë ð Î
í�î õ êeÏ ó%í

Walking Walls íeë î�Î
í�îeö íeë ì Î
í�î,ï Í ó%í
Table1: Numberof shaderandstaticphaseevaluations

Shader Static Overhead Numberof Reconstruction
Phase Channels Cost(Isotropic)

Floor 280 0 3 60
Pins 20 50 3 60
Ball 130 40 1 20

Table2: ApproximateFLOPcountsfor shaders

We usetheFELINE algorithm,whichconstructsananisotropicfil-
ter asa weightedsumof a setof trilinear “probes.” Theprobesare
takenalongthemajoraxisof theellipseformedby projectingacir-
cularpixel window to thesurface. Furtherdetailscanbe found in
[17].

Thecostof theFELINE reconstructionis dominatedby theeval-
uationof trilinear probes.The numberof probesusedin a single
evaluationof FELINE dependson theanisotropy of thesurfacein
screenspace.We estimatethe costof a singleprobeto be ÷øì3î
FLOPS,pershadermapchannel.Note,however, thatthecomputa-
tion of trilinearprobesis highly regularandamenableto paralleliza-
tion; significantspeedupscanbe achieved by taking advantageof
modernprocessorenhancementssuchas Intel’s StreamingSIMD
Extensionsor theAlphaprocessor’s deepfloating-pointpipelines.

The savings dueto shadermapsalsodependon the costof the
staticphase,includingany overheadinducedby factoring.Table2
givestheresultsof a handanalysisof theshadersusedto generate
theBowling animation.

TheFloor shaderis similar to theoakplank shadergivenin [1].
It involvesseveral calls to expensive shadinglanguagefunctions,
suchasnoise. The boundarybetweenthe static and dynamic
phasesis threevariableswhich control the grain of the wood, its
shininess,andthelinesbetweenplanks.TheBall shaderis aclassic
turbulencefunctionmodulatedby acolorspline,with asinglevari-
ablelinking thestaticanddynamicphases.Finally, thePin shader
(basedon [26]) is fairly simple,involving classificationof the pin
surfaceinto regions (base,body, crown) by three-spaceposition,
andtheuseof texturemapsfor thelabelsandscratcheson thepins.
The intermediatecomputationis simply the pin’s intrinsic surface
color.

Thevaluesin theOverhead columnin Table2 arefrom theex-
tra effort necessaryto convert È¹É�Ê·Ë*Ì into three-spacepositionfor



Shader StaticPhase Shadermaps
(Unfactored) (Factored)

Floor 280 165
Ball 130 57

Table3: Comparison(FLOP count)of unfactoredversusfactored
staticphases

the two latter shaders,which “carve” appearancefrom a three-
dimensionalfunction.Thisoverhead,partof thestaticphase,is not
necessaryin unfactoredshadersbecausethree-spacepositionis al-
readycalculatedin thenormalcourseof rendering.Sincethestatic
phaseis notevaluatedat exactly thesamelocationsasthedynamic
phase( ù 3.5), it mustcalculatethree-spacepositionindependently.
This calculationcanbeexpensive, requiringcalls to trigonometric
functions,but its effect on theoverall computationis significantly
reducedbecauseof thehigh reuseof shadermapdata.

TheReconstruction Cost columnshows thecostof reconstruct-
ing theintermediatecomputation,ignoringanisotropy. FromTable
2, it is obvious that someshaders,suchas Pins, cost so little to
evaluatethatthey donotbenefitfrom shadermaps.

Finally, Table3 comparesthecostof the staticphasein an un-
factoredshaderto thecostwhenthisphaseis acceleratedusingsha-
dermaps.Theformulafor thelatter is úüû�ý\Î1þ
ÿ È�� ÿ�� Ì���� ,
where ý is the costof an isotropicreconstructionof the interme-
diatecomputation,þ the averageanisotropy (2.5 for the Bowling
animation), � the costof an evaluationof the staticphase,� the
overheadfrom factoring,and � the ratio from Table1. As noted
above, thepin shaderdoesnotbenefitfrom shadermaps.

A directcomparisonof anunfactoredshaderandthatof ashader
usingshadermapsis verycontext dependent.Theoverallcostof ei-
thermethoddependson thecomplexity of thedynamicphase.Un-
dersimplelighting conditions,shadermapscanreducetotalshading
computationsto a fractionof their original number. However, the
relative improvementis diminishedasthedynamicphasebecomes
moreexpensive.

Frominspectionof theformulaabove andtheresultsin Table3,
it canbe seenthat the computationalcostof shadermapsis domi-
natedby anisotropicreconstruction.Theothercosts,from evalua-
tion of thestaticphaseandtheoverheadfrom factoring,areattenu-
atedby thehigh reuseof shadermapdata.Thus,shadermapsallow
theuseof significantlymorecomplicatedstaticphasecomputations
withouta largeincreasein shadingcost.

4.2 Quality Comparison
A side-by-sidecomparisonof imagesgeneratedwith andwithout
shadermapsis given in Figure2. Thoughsubtlevariationsexist,
thereis no visible differencein quality. (Thesourceof thesevaria-
tionsis discussedin thenext section.)

Figure3 shows framesfrom the Bowling animationshadedac-
cordingto theageof theshadermapdataaccessedduringrendering,
with brighterareasyounger.

4.3 Approximation and Error
Shadermapsdo not exactly reproducetheoutputof theshaderthey
arederivedfrom,sincethewarpto screenspaceimpliesalossof ac-
curacy. In mostcases,theapproximationis visually indistinguish-
able,but therearesituationswhereit causesincorrectresults.If the
dynamicphaseishighlynonlinear, minorerrorscouldresultin large
changesin appearance,precludingthe useof shadermaps.This
problemis not uniqueto shadermaps;bump maps[3], for exam-
ple, do not rendercorrectlywhenfiltereddirectly becauseof their
nonlinearinteractionwith lighting [23, 20].

5 Discussion and Future Work
It might bepossibleto automaticallyfactorshadersusingdataflow
analysis,asin [8], or simplify handfactoringby addinga syntactic

device, suchasa static keyword, to the shadinglanguage.How-
ever, a benefitof explicit factoringis that it givesmorecontrol to
theshaderwriter, aswell asallowing staticanddynamicphasepro-
ceduresto bereusedseparatelyandsharedbetweenobjectssimul-
taneously.

It is interestingto considerthe amountof memoryrequiredto
supportshadermaps.An upperboundof memoryaccessedwhile
renderinga single frame (the minimum requirement)is given by
multiplying the numberof pixels ( ÷ ì Mpixels), the averagesize
of the intermediatecomputationsstoredin a shadermap( ÷ í�î
bytes/shadermapsample),andtheaverageper-pixel anisotropy af-
ter the warp to screenspace( ÷�ì -3 shadermapsamples/pixel). If
the renderersupportstransparency, the depthcomplexity ( ÷ í�î )
alsocontributes,but optimizationsfor opaqueobjectsapply. These
quantitiesall varyconsiderably, andin somecasesthememorycost
might besolargeasto requirecachereplacementstrategiesor pre-
cludetheuseof shadermapsaltogether.

Shadermapshave potentialapplicationsbeyond accelerationof
software proceduralshading. So far, hardware systemsimple-
mentingproceduralshading[19] havebeenlimited in functionality,
largely becauseof the per-pixel memoryrequiredto storeappear-
anceparametersandintermediatevaluesthroughoutshadercalcu-
lations. Shadermapsreducethenumberof appearanceparameters
that needto be rasterizedandcanalsoact to simplify the shader
computation,bothof whichreducememoryrequirements.Onsuch
systems,shadermapswouldallow theuseof morecomplex shaders
withouta per-pixel memoryincrease.

Shadermapsmight alsoapply to morecommonhardware. One
view of shadermapsis asdynamicallygeneratedtexturemapscon-
taining arbitrary data. The dynamicphasecan likewise be seen
asa complex multitexturing engine. Interestingly, consumer-level
graphicshardwareis alreadymoving in directionscompatiblewith
these interpretations. PC graphicscards with support for on-
demandloadingof partial texturesfrom systemmemoryhave re-
centlybecomeavailable[28]. Adaptingthis technologyto dynam-
ically generateddatais conceivable, thoughmethodsfor dealing
with “cachemisses”would benecessary, asin [25]. Concurrently,
increasinglycomplex multitexturing graphicsengineshave been
proposed[12, 16] andthetrendin consumerhardwarehasalsobeen
towardsmorepowerful multitexturing[9]. Theadvancesfrom these
two areascombinedwith shadermapspoint to apossibleshortcutto
powerful proceduralshadingonconsumer-level graphicshardware.
However, someproblemsremainto be solved. Texture memories
areusuallysmallerthanthoseof generalpurposeCPUs,so care-
ful cachemanagementand replacementstrategies would have to
bedevised. Shadermapsalsoincreasethebandwidthrequirements
of texturememory, analreadystrainedresource.However, thead-
vent of embeddedDRAM might remove this limitation. Finally,
thestaticevaluationsincreasetheloadon thehostCPU,or require
a secondgeneralpurposeprocessordedicatedto this task.

Anotherpossibilityis to usehardwareto acceleratethemostex-
pensive part of shadermaps,the reconstructioncalculation,while
continuingto performtheotherrenderingandshadingcalculations
in software. Sucha “reconstructionaccelerator”would be much
simpler than most graphicsaccelerators,consistingof not much
morethanan anisotropicfiltering engineandmemoryfor storing
theshadermaps.

In conclusion,shadermapsaccelerateproceduralshadingby ex-
ploiting inter-framecoherenceto reducecomputation.Shadermaps
enablethe use of much more complex shaderswithout a corre-
spondingincreasein shadingtimesincethecostof shadingis amor-
tizedoverseveralframes.Furthermore,shadermapsrecasttheshad-
ing computationinto a form which is amenableto hardwareaccel-
eration,potentially providing a leap in quality in consumer-level
graphics.
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A Example Shader
Therings shader below is a simplified shader for a wooden object prior to factoring,
written in the RenderMan shading language. It simulates wood as nested cylinders
with a periodically varying color, from which surfaces take their appearance. The cal-
culation takes place in a local shader space, so that when the associated object moves,
the rings stay in the same position on the object. The position within a ring determines
the color of a point and its shininess; darker parts of the wood appear shinier.

The boundary between the static and dynamic phases of the shader is marked in the
code, under the assumption that this shader is used in the typical way, i.e. associated
with an object with fixed geometry.

This shader is much simpler than most. For instance, there is no code to handle
antialiasing, opacity, or ambient light. The static phase would typically be much more
complicated, with calls to expensive functions such asnoise, and a more elaborate
color mapping performed with spline.

rings requiresthat two built-inappearanceparametersbeinterpolated, thenormal
N and the position P. P is used in the ring color computation, and both N and P are
used in the lighting calculation (P is an implicit parameter in the calls todiffuse
andspecular.)

surface
rings(float Ks = .6, Kd = .6,

roughness = .1;
color lightwood = color (.69, .44, .25),

darkwood = color (.35, .22, .08),
specularcolor = 1;)�

point PP;
float dist;
normal Nf;

/* Transform position P to local shader space. */
PP = transform("shader", P);

/* Find the distance from PP to the line z = 0. */
dist = sqrt(xcomp(PP)*xcomp(PP) +

ycomp(PP)*ycomp(PP));

/* Make rings from fractional part of dist... */
dist -= floor(dist);
/* ...and use it to linearly blend wood colors. */
Ci = mix(lightwood, darkwood, dist);

/* ----------- STATIC/DYNAMIC BOUNDARY ------------ */

/* Multiply this color by the diffuse lighting. */
Nf = faceforward (normalize(N),I);
Ci *= Kd*diffuse(Nf);

/* Add the specular highlight, attenuated by ring */
/* position. Darker areas have brighter specular */
/* highlights. */
Ci += dist * specularcolor * Ks *

specular(Nf,-normalize(I),roughness);	

rings can be replaced with the two shaders below,rings static and
rings dynamic, joined by a shadermap storing the intermediate computations, rep-
resented by Ci and dist. The shadermap storage will have been defined in the scene
description before these procedures are invoked. The definition includes a name to
reference the shadermap and the number and type of each element of the shadermap
(a color and a float, in this example). The code below borrows the syntax of the Ren-
derMan shading language, introducing the new functionsshadermap store and
shadermap along with a new shader type,shadermap shader.

The shadermap shaderrings static performs the static phase of therings
shader. Its output is stored in a shadermap, referenced by name.rings static
uses the built-in appearance parameter P, which must be interpolated based on the
current (u,v). Theshadermap store function takes (u,v) as an implicit argument,
specifying the location at which to store its data.

shadermap shader
rings static(string shadermap name;

color lightwood = color (.69, .44, .25),
darkwood = color (.35, .22, .08);)�

point PP;
float dist;

PP = transform("shader", P);
dist = sqrt(xcomp(PP)*xcomp(PP) +

ycomp(PP)*ycomp(PP));
dist -= floor(dist);



Ci = mix(lightwood, darkwood, dist);

/* Store intermediate results in the shadermap. */
/* The (u,v) location to store the data at is an */
/* implicit argument. */
shadermap store(shadermap name, 0, dist);
shadermap store(shadermap name, 1, Ci);	

Thesurfaceshaderrings dynamic performsthedynamicphaseof therings
shader. It first reconstructstheoutputof thestaticphasethroughcallsto shadermap.
It thenperformsthelighting calculation,which completestheshadercomputation.

surface
rings dynamic(string shadermap name;

float Ks = .6, Kd = .6,
roughness = .1;

color specularcolor = 1;)�
normal Nf;
float dist;

Figure2: Imagesgeneratedwith shadermaps(left) andwithout shadermaps(right)

Figure3: Framesfrom theBowling animation.Pixelsareshadedaccordingto theageof theshadermapdataaccessedduringrendering,with
brighterareasyounger. Thebright line on thefloor is dueto thecamera’s forwardmovement.

/* Reconstruct the intermediate results from the */
/* shadermap. As in the texture function, (u,v) for */
/* the current point is an implicit argument to the */
/* shadermap function. shadermap is responsible */
/* for performing the anisotropic filter of the */
/* shadermap data as well as handling the on-demand */
/* generation of that data. */
dist = float shadermap(shadermap name, 0);
Ci = color shadermap(shadermap name, 1);

/* Complete the shader computation */
Nf = faceforward (normalize(N),I);
Ci *= Kd*diffuse(Nf);
Ci += dist * specularcolor * Ks *

specular(Nf,-normalize(I),roughness);



