United States Patent

US006763276B1

(12) (10) Patent No.: US 6,763,276 B1
Perry 5) Date of Patent: Jul. 13, 2004
(54) METHOD FOR OPTIMIZING A 4924386 A * 5/1990 Freedman et al. 700/99
CONTINUOUS COMPLEX SYSTEM USING A 5586,049 A 12/1996 Kurtzberg et al. 364/499
SET OF VERTICES AND DYNAMIC 5,630,070 A 5/1997 Dietrich et al. 395/208
HIERARCHICAL CONSTRAINTS 5,729,466 A * 3/1998 Bamjiccccoeviiiiininnnn 716/2
5,905,666 A * 5/1999 Hoffman et al. 700/99
(75) Inventor: Ronald N. Perry, Cambridge, MA (US) 6,009,379 A 12/1999 Kurtzberg et al. 702/84
6,014,505 A * 1/2000 SChOI «ovoovovvevveereerereee. 716/3
(73) Assignee: Mitsubishi Electric Research
Laboratories, Inc., Cambridge, MA * cited by examiner
(US)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Albert W. Paladini
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Dirk Brinkman; Andrew J.
U.S.C. 154(b) by 763 days. Curtin
(21) Appl. No.: 09/604,318 7 ABSTRACT
(22) Filed: Jun. 27, 2000 A method optimizes a system. Performances of design
’ ’ parameters of an objective function modeling the system are
(51) Int. CL7 o GO6F 19/00 represented in a multi-dimensional search space. A set of
(52) US.Cl oo, 700/97; 705/7;, 705/8; ~ vertices are positioned in the search space. Each vertex has
706/19 an associated one of the performances. The vertices in the set
(58) Field of Search 700/97, 99; 705/7, are sorted in a worst to best performance order. Each vertex
705/8; 716/2; 703/2; 706/19 in the ordered set is moved to a next position if the
performance at the next position is better than a current
(56) References Cited performance of the vertex. The sorting and moving are
repeated in a cycle until a termination condition is reached.
U.S. PATENT DOCUMENTS
4,744,028 A 5/1988 Karmarkar 364/402 26 Claims, 7 Drawing Sheets
101

Cooler

Condenser

h

/
.
——————-———- 4
108

e

IR

A

Reboiler

102

113
110
N
[o
115
C(x) 114
116
D

US 6,763,276 Bl

Sheet 1 of 7

Jul. 13, 2004

U.S. Patent

a0l

L Ol

19]logsy

AN/
141 (x)9 —
\

]

e e e

lasuepuon

181009

0]

U.S. Patent Jul. 13, 2004 Sheet 2 of 7 US 6,763,276 B1

FIG. 2

Value of pH

T | | T T
514 oy Sg 0e Ge

M aineradwsa]

US 6,763,276 Bl

Sheet 3 of 7

Jul. 13, 2004

U.S. Patent

IE

é
palyIny
seAloslqo

00€

DBJeAIIOR B|N4
uoljen|easay

wH A SOA
Qo:mN_E_ﬁo aowwv s
paule)al 1s8)-ay
N
ove

ON->

MN % g :s|eu
18410 8yi yuey
M eq N e

0ee v

H 10} M
aoe|day

{

0cE

H
uonos|jal axen

A

M % MN ‘g 1epio
Ul s|eli) Muey

1

s|eu}

01LE 1 xaidwns 1511y oxeW

1

mcozmw_&_ﬁo tmumv

U.S. Patent Jul. 13, 2004 Sheet 4 of 7 US 6,763,276 B1

FIG. 4

US 6,763,276 Bl

Sheet 5 of 7

Jul. 13, 2004

U.S. Patent

g 9ld

09 ~ |ore]
0¢S ~]eoueuLiopad
OLg ~| uonsod
[
605

US 6,763,276 Bl

Sheet 6 of 7

Jul. 13, 2004

U.S. Patent

9'DId
009
BAON
el
or9~L 1daooy
SOA
Y |
SBOIl4BA gpanoldul | XBLIBA xwwmw> SETTN BT
! S5OUBWLIOUS ¢ P souBwWIOped | 1o '
pejuon [€ON Emm_t d <€ sox 1se7 [eneg € anol S jo
[euy 188
— 4 z 4 Z !
029 099 059 oN 0£9 029 019 L09
ON
SOA

U.S. Patent

Jul. 13, 2004

Sheet 7 of 7 US 6,763,276 B1

702

3

)

0
40

)

7))
V<

704

701
FEASIBLE

US 6,763,276 B1

1

METHOD FOR OPTIMIZING A
CONTINUOUS COMPLEX SYSTEM USING A
SET OF VERTICES AND DYNAMIC
HIERARCHICAL CONSTRAINTS

FIELD OF THE INVENTION

The present invention relates generally to optimizing
complex systems, and more particularly to optimizing con-
tinuous constrained complex systems.

BACKGROUND OF THE INVENTION

In a complex physical system, such as a power or chemi-
cal plant, various attributes, e.g., cost, profit, product, waste,
quality, and efficiency, can be modeled by an objective
function F(x), where x represents design (input) parameters
that determine a performance (output) of the objective
function. The design parameters define a search space,
where each instantiation of x of the search space has a
corresponding performance.

It is desired to optimize the performance of the system.
This can be done by locating an optimum performance in the
search space. Typically, optimization minimizes waste, and
maximizes product, quality, and efficiency.

Due to engineering complexities, the design parameters
may also have to conform to physically feasible limits called
constraints C(x). The constraints can be dependent or inde-
pendent of the objective function. For some design
parameters, the performance may be infeasible.

In many complex physical systems the objective function
and the constraints are non-linear, non-differentiable, and
noisy. This makes it more difficult to optimize the objective
function.

Formally, the optimization problem can be stated as
follows. Maximize the objective function F(x) subject to
constraints C(x)20, where x is a real-valued vector of
design parameters x;, X,, X5, . . ., X,, for all x € R", and
i=1, . . ., m. If function minimization is required, then
multiply the objective function by negative one to recast the
problem to function maximization. Similarly, any constraint
in the form C(x)=0 can be recast into the canonical form by
multiplying C«(x) by negative one. In the following, the
terms “better and worse” performance will be used to cover
both maximization and minimization problems.

FIG. 1 shows an example chemical plant 100 in simplified
form. Using a cooler 101 and a heater 102, the system
separates product 103 and waste 104 from an input stream
105. The system includes a condenser 106, a reboiler 107,
and reactive plates 108 in a distillation or fractionating
column.

The objective function F(x) 110 that models the system
100 maximizes the amount of the product (P) 113, and
minimizes waste (W) 114 for a particular input stream (I)
115. The design parameters 111, vector x, can include the
rate of flow in the input, the heating and cooling rates
applied, the liquid and vapor compositions of each compo-
nent on each plate, and the vapor pressure.

The design parameters X are subject to restrictions or
interrelations, i.e., constraints C(x) 116 of many kinds. For
example, compositions and flows must be positive, tempera-
tures must not exceed certain upper bounds. More compli-
cated constraints indicate how components interact physi-
cally. For instance, vapor and liquid compositions are related
by a highly non-linear function of temperature. Careful
analysis of the system 100 allows one to generate the

10

15

20

25

30

35

40

45

50

55

60

65

2

appropriate objective function F(x) 110 and constraints C(x)
116. The function F can then be optimized to maximize
product and minimize waste under particular operating
conditions.

Many constrained optimization functions are solved by
searching for optima in the search space using an adaptive
optimization method. Often the optima lie near constraint
boundaries. Consequently, avoiding search in constrained
space can hinder the optimization method’s path to the
optima.

The original idea for an adaptive optimization method
was described by Box in “Evolutionary Operation: A
Method for Increasing Industrial Productivity,” International
Conference on Statistical Quality Control, Paris, July 1955,
reproduced in Applied Statistics, VI, pp. 3-22, 1957. Box
developed an idea he called “evolutionary operation.” Evo-
lutionary operation pertains to an empirical optimization of
full scale processes, subject to errors in observations. The
basic idea is to replace the static operation of a process by
a continuous and systematic scheme of slight perturbations
in the control parameters. The effect of these perturbations
is evaluated and the process is shifted in the direction of
improvement. Box was interested in increasing production
by systematically adjusting process parameters that affect
output. His idea for evolutionary operation was more related
to an operational procedure which a plant manager might
follow than it was to optimization with a computer system.

In 1962, Spendley et al., in “Sequential Application of
Simplex Designs in Optimization and Evolutionary
Optimization,” Technometrics, November 1962, applied a
simplex method to the problem of non-linear numerical
optimization. This simplex method should not be confused
with the simplex method for linear programming.

A simplex is a geometric construct that has one more
vertex than the number of dimensions in the search space. If
k is the number of dimensions in the search space, then the
simplex is defined by k+1 vertices in that search space. As
shown in FIG. 2, a simplex in two dimensions is defined by
three vertices. In one, two, and three dimensions, the sim-
plex is respectively a line, a triangle, and a tetrahedron. In
complex systems, the dimensionality of the search space can
be quite large, for example, twenty or more. The lines
connecting the vertices are used to visualize the simplex.
They have no other function. Each vertex is a graphical
representation of one of the objective function’s constraint
relations and an associated performance of F(x) that deter-
mines its relative worth to the simplex.

A simplex process locates an optimum of the objective
function F based on the movement of the simplex through
the search space. The simplex is driven through a sequence
of logical moves based on the performance evaluated as
each vertex, and the orientation of the simplex. While the
simplex is moved, it can adaptively change in shape as the
spacing and curvature of the contours of the search space
defined by the objective function F change.

As shown in FIG. 3, the basic simplex method 300 is easy
to understand and apply. The optimization begins with initial
trials. The trial conditions are spread out evenly. The number
of initial trials is equal to the number of design parameters
plus one. The initial trials form the first simplex.

The basic simplex method has the following rules. The
first rule rejects the trial with the worst performance in the
current simplex. A next performance value is determined, by
reflection 320 into the search space opposite the undesirable
result. This next trial replaces 330 the worst trial in the
simplex. This leads to a next worst performance in the

US 6,763,276 B1

3

simplex that, in turn, leads to another next trial, and so on.
At each step, one moves away from the worst performance.
By that, the simplex moves steadily towards a better per-
formance.

The second rule never returns to the performance that has
just been rejected. The calculated reflection in the search
space can also produce a worst performance. Without this
second rule the simplex would just oscillate between the
performance values. This problem is nicely avoided by
choosing the second worst performance and moving away
from it.

Besides these two main rules, two additional rules are also
used. Trials retained in the simplex for a specified number of
steps are reevaluated 340. In the presence of noise, where
identical design parameters give different performance
values, the reevaluation rule avoids the simplex from getting
stuck around a false worst performance. Trials never cross a
constraint boundary of the search space. Instead, a very
unfavorable performance is applied, forcing the simplex to
move away from the constraint boundary.

A modified simplex method can adjust the shape and size
of the simplex depending on the response in each step. This
method is also called the variable-size simplex method.
Several new rules are added to the basic simplex method
rules. These new rules expand the simplex in a direction of
better performance, or contract the simplex when a move
was taken in a direction of worse performance. The proce-
dures for expansion and contraction enable the modified
simplex both to accelerate along a successful path of
improvement and to hone in on the optimum. Therefore the
modified simplex will usually reach the optimum perfor-
mance quicker than with the basic method and pinpoint the
optimum performance more closely.

Nelder et al, in “A Simplex Method For Function
Minimization,” Computer Journal, Vol. 7, 1965, developed
a computerized method to perform optimization using a
simplex constructed of n+1 vertices to search an
n-dimensional search space, also see Gill et al. in Practical
Optimization, Academic Press, London, 1981.

The Nelder simplex method differs from most of the then
available optimization methods because it is not based on
gradients or quadratic approximations of F(x). It is an
opportunistic method that assumes that an objective function
is defined and that there is some optimum in the search
space. The Nelder method does especially well when cur-
vature of the search space is changing rapidly. It is relatively
slower around maxima where the search space is smoother
and derivative methods work faster. The Nelder method does
not explicitly handle constraints. However, the method has
since been adapted to handle constraints by the use of
penalty functions.

The penalty function adds a penalty value to the perfor-
mance of the objective function when constraints are
encountered. Unfortunately, this penalty changes the actual
value of the objective function and thus changes the “shape™
of the true unconstrained search space. In effect, as further
described below, the penalty function “warps” the search
space near constraint boundaries. This makes it very difficult
to locate an optimum near or at the boundary. Of course, in
many practical systems, this is exactly where one would
expect to find optimum performance. It is well known that
any highly tuned system runs on its “edges.”

The nature of a constrained problem significantly effects
the logic of the optimization process. Box, in “A New
Method of Constrained Optimization and Comparison With
Other Methods,” Computer Journal, Vol. 8, pp. 42-54,

10

15

20

40

45

50

55

60

65

4

1966, describes a “complex” method. The complex method
is a modified simplex that handles constraints.

This transformation is not trivial, however, because con-
strained optimization is significantly different from uncon-
strained optimization. Therefore, in developing a con-
strained version of the simplex method, Box changed most
of the details of the method, leaving only the basic principle
of reflecting the worst of a collection of vertices. In the new
process, constraints are evaluated and dealt with differently
than they are in methods using penalty functions.

Instead of using a penalty function, Box uses a con-
strained performance that is separate from the objective
function itself. The constrained performance has a different
functional meaning or value than the unconstrained perfor-
mance. However, the constrained performance can be opti-
mized just the same.

Box defines a constraint whose boundary is easily iden-
tified (e.g., X,=27) and whose evaluation is independent of
the objective function F an independent or explicit con-
straint. In contrast, a dependent or implicit constraint has a
complex boundary and requires an evaluation of F. Box
attempts to stay very close to a constraint boundary by
setting independent parameter violations just inside the
constraint limit. If a dependent constraint is violated, the test
vertex is moved %2 way towards the centroid. From his
results, Box concludes that “in constraint bound problems,
the constraints are of as much importance as the contours
and gradient of the objective function.”

One problem with the prior art simplex and complex
methods is that they tend to lose dimensionality due to
concentrating on the vertex with the worst performance.
This tendency for the vertices to “line-out” reduces their
ability to move about the search space.

Therefore, it is desired to provide an optimization method
that is able to operate without losing dimensionality.
Furthermore, the method should be able to locate optima
near a constraint boundary. In addition, the method should
be applicable to global optimization problems where many
local optima exist, and the method should be able to adapt
to dynamically changing environments, for example, in a
real time control system.

SUMMARY OF THE INVENTION

Provided is an optimization method that, unlike those of
the prior art, utilizes a constrained space to help locate an
optimum. The rationale for this implementation is that many
optima lie near constraint boundaries. The strict avoidance
of constrained space, as in the prior art, can hinder a search
for the optimum. In the present method, vertices of a set are
allowed, and sometimes encouraged, to move into the con-
strained space, unlike the methods of the prior art, where
constraint violations are prohibited or severely penalized.

A discontinuity at a constraint boundary is handled by
partitioning the performances of the search space into any
number of unique levels. The partitioning is done by group-
ing the constraints into one or more hierarchical levels. Each
vertex is then evaluated according to the group of constraints
in each level, beginning with the lowest level. If the vertex
evaluates to a negative performance, than the first level and
its negative performance is assigned to the vertex. If not,
then the vertex is evaluated at the next level, and so forth.
Only if the vertex still has a non-negative performance after
all levels of constraints have been considered is the objective
function evaluated. This effectively partitions the search
space into a plurality of levels.

The manner of partitioning differs from Box’s explicit-
implicit categorization. The present method defines a con-

US 6,763,276 B1

5

strained performance for each level of constraints that is
independent of a feasible objective function. Furthermore,
the grouping of the constraints can dynamically be changed
during the search for the optimum performance.

The constrained performance for a particular level of
constraints is some combination of the violated constraints
in that level, for example, the sum. A constraint is considered
violated when its value is strictly less than zero. Therefore,
by definition, the sum of the violated constraints is negative
and will be maximized towards the positive or feasible
direction.

In conjunction with the multiple levels of performances,
the present method defines a set of rules concerning the
ordering and movement of the set of vertices as they straddle
a constraint boundary. These rules and the multiple levels of
constrained performances make the present method less
sensitive to constraint discontinuities, and can significantly
aid motion along a constraint boundary toward an optimum.

In addition to the new constraint handling techniques, the
method is improved so that loss of dimensionality is
reduced. One problem with the adaptive simplex process of
the prior art is that it tends to lose width in one spatial
dimension. This loss of dimensionality then restricts motion
in that direction. The present method attempts to move every
vertex before resorting the set of vertices. Both the simplex
and complex methods of the prior art concentrate exclu-
sively on the present worst performance vertex.

More particularly, provided is a method that optimizes a
system. Performances of design parameters of an objective
function modeling the system are represented in a multi-
dimensional search space. A set of vertices are positioned in
the search space. Each vertex has an associated perfor-
mance. The vertices in the set are sorted in a worst to best
performance order. Each vertex in the ordered set is moved
to a next position if the performance at the next position is
better than a current performance of the vertex. The sorting
and moving are repeated in a cycle until a termination
condition is reached.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a system and model to be optimized
according to the method of the invention;

FIG. 2 is a graph of a search space and a simplex;

FIG. 3 is a flow graph of a simplex method;

FIG. 4 is a graph of a set of vertices moving through a
search space;

FIG. 5 is a graph of an expanding set of vertices;

FIG. 6 is a flow graph of a method according to the
invention;

FIGS. 7a-b are graphs of a partitioned search space with
feasible and infeasible regions;

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Optimizing Search Data Structures

My invention provides an improved method for adap-
tively optimizing a constrained objective function defined
over a continuous search space. As shown in FIG. 5, an
n-dimensional objective function F defines an n-dimensional
search space 500. I define a set of n+1 vertices. In FIG. §,
the vertices are 501-503.

In a practical application, each vertex is stored as a data
structure in a computer memory as a data element 509.

10

20

25

30

35

40

45

50

55

60

65

6

Hereinafter, operations on these data elements are to be
construed as operations on their logical equivalent vertices.
The objective function and each constraint can be a com-
puter process that provides feasible, and perhaps, infeasible
performance values for the array of data elements that
represent my set of vertices.

Array Vertices with Positions, Performances, and
Levels

Each element 509 of the array stores the following
information: a position having coordinates 510, a perfor-
mance 520, and a level 530. The coordinates of the position
defines the location of the corresponding vertex in the search
space 500. The performance defines a value of the system
being optimized at the vertex’s position. How the perfor-
mance is determined is described in greater detail below.
The performance can be feasible, or in the case when the
position of the vertex violates one or more constraints, the
performance can be infeasible. The use of the level value is
also described below. Briefly, the search space can be
dynamically partitioned, and each partition can have an
associated unique hierarchical level. The partitioning is
effected by grouping the constraints and the objective func-
tion.

Moving Vertices

My method moves the vertices in the search space in such
a way that the performance of the objective function is
optimized. The movement of the vertices can be subject to
constraints. As described in greater detail below, the way
that I deal with constraints distinguishes my improved
method from adaptive optimization methods of the prior art.

Moving an unconstrained verteX, other than the vertex
with the best performance is done as follows. The vertex is
reflected through the centroid 550 of the remaining vertices.
For example, the vertex 504 is a new reflected position of
vertex 501. The distance that the vertex moves past the
centroid is equal to the distance from the original location of
the vertex to the centroid times some expansion factor (EF)
540, e.g., 1.25.

The movement of the vertex with the best performance is
described under the special rules section below. It should be
noted, that any vertex of the set can become the best
performing vertex at any time if during a trial move it betters
the current best performance. Therefore, one vertex in the set
is always marked as the vertex with the best performance.

A move is deemed successful when the performance of
the vertex at the next position is better than the performance
of the vertex at its old position, i.e., vertices are only allowed
to move to locations in the search space that have better
performance. If the move is successful, then the next posi-
tion and next performance replaces the original position and
the original performance of the vertex. Otherwise, the move
is discarded, and the vertex remains at its original position.

Cycle of Moves

A cycle of moves constitutes attempting to move each
vertex of the set to better the performance of the vertices.
The vertices are moved in order of increasing or better
performance. Specifically, the vertex with the worst perfor-
mance is moved first, and the vertex with the best perfor-
mance is moved last. Because of the expansion factor, the
vertices will tend to disperse in their relative positions. That
is, the spatial extent of the set increases with each successful
move.

US 6,763,276 B1

7

If the performance of the best vertex is unchanged during
a cycle, then the other vertices are moved toward the best
vertex, by a contraction factor (CF), e.g., 0.75. That is, the
spatial extent of the set decreases.

Because the vertex set is adaptive, it tends to elongate
towards areas in the search space that have higher
performance, see the description of FIG. 4 below. Thus, the
search is more vigorous in the direction of past successes,
which usually holds the most promise for future success as
well. However, this tendency to elongate must be tempered,
otherwise the vertices could “line-out” with a reduced
dimensionality thereby disabling the vertex set from prop-
erly maneuvering and covering the search space completely.

Adaptive Search Method

FIG. 6 shows the basic steps of my method 600. A set of
vertices 601 is evaluated according to their positions in the
search space 500, and sorted 610 according to an increasing
order. Here, an increasing order means worst to best, regard-
less whether the optimization is a maximization or a mini-
mization problem. In other words, in a maximization, a
maximum value is the best, and in a minimization, a
minimum value is the best.

The vertices are trial moved 620 in increasing order of
their performance (worst to best). A trial move means
conditionally moving a vertex to a next position, and then
evaluating the vertex at the next position. A better perfor-
mance 630 at the next position results in accepting the trial
move 640. Following the worst vertex, the next worst vertex
is conditionally moved, tried, and accepted, and so on, until
the last vertex of the set is conditionally moved, tried and
accepted. As stated above, at the end of a cycle, the last
vertex may no longer be the best vertex.

After a complete cycle 650 of conditionally moving,
trying, and accepting each vertex, if the overall best perfor-
mance 660 has not improved during the cycle, the vertices,
other then the best vertex, are contracted 670 towards the
best vertex according to the contraction factor, and the cycle
is repeated until some predetermined termination condition
is reached, e.g., a fixed number of iterations, or the incre-
mental improvement (rate of change) in the optimization is
less than some threshold value. Contracting decreases the
spatial extent of the set of vertices.

FIG. 4 shows nine moves (1-9) of a triangular set of
vertices in a two-dimensional search space according to the
present invention. Note that triangles 3—4, 5—6, and 8-9
overlap. Also, note the expansion towards the optimum, and
then the contraction around the optimum.

As noted earlier, prior art simplex and complex methods
for adaptive optimization have a tendency to lose width in
one spatial dimension because those methods concentrate
exclusively on the vertex with the worst performance. In
contrast, [attempt to move every vertex in the set, from
worst to best, thus, the tendency to lose dimensionality, as in
the prior art, is reduced.

Although the set of vertices remains relatively insensitive
to the value of the contraction factor, expansion factors of
only slightly greater than one provide the best stability,
especially in search spaces of a higher dimensionality, e.g.,
n>20. In addition, if the dimensionality of the search space
is large, e.g., n>20, optimization can be improved by
increasing the number of vertices.

Generating an Initial Set of Vertices in the Search
Space

Vertices are initially generated in the search space as
follows. A single base vertex is defined at some arbitrary

10

15

20

25

30

35

40

45

50

55

60

65

8

position in the search space, it does not matter where.
Additional vertices are generated by incrementing each
coordinate of the base vertex by an appropriate step size. The
step sizes are scale factors which help to give the set a sense
of how big the search space is in each coordinate direction.
That is, the step size is proportional to some small fraction
of the size of a particular dimension.

Special Rules

If in the course of a cycle, the vertex to be moved is the
vertex with the best performance, then the best vertex is
reflected to a next position 505 that is away from the
centroid 550 of the remaining vertices, rather than through
it, as shown in FIG. 5. The distance that the best vertex is
moved is equal to the distance from the best vertex to the
centroid times the expansion factor 540. This accelerates the
optimization process. It should be noted that during a cycle,
the vertex with the best performance at the beginning of the
cycle is not necessarily the best at the end of the cycle,
because some other vertex could have improved its perfor-
mance.

If the set of vertices contracts over a predetermined
number of successive cycles, e.g., ten, then the set is
regenerated at its current size. The current size for each
coordinate of the search space can be computed as the
difference between a corresponding coordinate of the set
with the largest value and a corresponding coordinate of the
set with the smallest value. Next positions of vertices are
derived, as described above, from the vertex with the best
performance using the current sizes for each coordinate
instead of the step sizes for each coordinate. This helps to
restore the dimensionality of the set where the vertices have
become aligned.

The same procedure can be used when the set contracts to
a size so small that it is no longer moving significantly.
When this occurs, the regeneration can be done using the
original step sizes of the set or by increasing the current size
in each coordinate direction by some boost factor (e.g., 1.5).
If the set continues to shrink, then it most likely is converg-
ing to an optimum.

Constraint Handling

So far I have described my method in terms of an
unconstrained system. However, as stated above, most prac-
tical optimization problems are “constrained.” They are
constrained because not all performances associated with the
design parameters result in a feasible performance. For
example, most chemical plants have temperature, pressure,
capacity, and time constraints, to name but a few.

A constraint C; is violated when its associated “perfor-
mance” is negative. Thus, the constraint C,=x,-5 states that
the design parameter x, must be greater than or equal to 5
in order for the constraint’s performance to be considered
feasible, otherwise the performance is infeasible.

Partitioning of the Search Space

In one embodiment, I partition the search space into three
types of spaces: an independent constrained space, a depen-
dent constrained space, and the unconstrained space of the
objective function. In other words, the partitioning is due to
the grouping of the constraints from low level independent
constraints, to higher level dependent constraints, and then
to the highest level unconstrained objective function.

Performances of vertices in the independent constrained
space are determined by summing the performances of

US 6,763,276 B1

9

violated (negative) independent constraints. Independent
constraints are independent of the objective function, and
depend only on the design parameters.

Performances of vertices in the dependent constrained
space are defined by summing the performances of the
violated (negative) dependent constraints. The dependent
constraints require some preliminary calculations involving
the design parameters and can often require an objective
function evaluation.

Of course, performances in the unconstrained space are
derived directly from the objective function.

As shown in FIGS. 7a-b, the unconstrained space is
normally referred to as the “feasible” performance region
701, as distinguished from the constrained (dependent or
independent) or “infeasible” performance region 702.
Below, with respect to the most general case, I will describe
how “feasible” and “infeasible” performances are relative.

FIG. 7a shows two simple independent constraints x; =0
and x,=451, and FIG. 7b shows a complex dependent
constraint. The Figures also show local optima 703, con-
strained global optima 704, unconstrained global optima
705, and a false optimum 706. Notice that some of the
optima are near or at the constraint boundaries, as one is
likely to find in real high performance systems.

Performances of independent constraints are easy to
evaluate, as they are simply limits on the design parameters,
such as:

2.0 meters=radius=5.0 meters (radius is the parameter)

0 kilos=weight=200 kilos (weight is the parameter)

Performances of dependent constraints, on the other hand,
require some preliminary calculations and can often be
defined by functions of the objective function. The practical
significance of this distinction is that the performances of the
independent constraints may be partitioned and evaluated
separately from the performances obtained from the objec-
tive function. In fact, it is common to encounter perfor-
mances of design parameters for which the objective func-
tion may be undefined or yield physically meaningless
performances. Examples would be negative weights or
negative areas. Thus, it is important to ensure that all
constraints are satisfied before the objective function itself is
evaluated.

Therefore, if a vertex is in the infeasible region 702, then
the performance of the vertex is the sum of the (negative)
performances of the violated constraints. This negative
performance is maximized to encourage the vertex to move
to a better performing position. Specifically, the vertex will
only be moved if the performance is improved, that is, it
becomes less negative or positive, or moves to a better
search space partition, e.g., the vertex moves from the
independent constrained space to the dependent constrained
space. This increases the likelihood that the vertex will
eventually move back to the feasible region 701.

Even if the vertex successfully moves from the indepen-
dent constrained space, it’s next position may still be in
violation of one or several dependent constraints. In such a
case, the performance of the vertex is the sum of the
performances of the violated dependent constraints. Once
again, this performance is maximized to encourage the
vertex to move to a better performing position.

In this case, vertices in the independent constrained space
have performances that are regarded as “infeasible” relative
to the performances of vertices in the dependent constrained
space, and performances of vertices in the dependent con-
strained space are regarded as “feasible” relative to the
performances of vertices in the independent constrained

10

15

20

25

30

35

40

45

50

55

60

65

10

space. Furthermore, the performances of vertices in the
unconstrained space are regarded as “feasible” relative to the
performances of vertices in both the independent and depen-
dent constrained spaces.

Constraint Boundaries

As is well known, the constraint boundary, or interface
between the feasible and infeasible regions, oftentimes pre-
sents an optimization method with formidable problems.
The main difficulty is one of keeping the optimization search
feasible without causing any sharp discontinuities at the
constraint boundaries. It will become apparent, that the
vertices of my improved method are unique in that they are
quite oblivious to discontinuities at constraint boundaries.

Interior and Exterior Penalty Functions

As stated above, one prior art solution forces search space
continuity by defining a penalty function such that the
feasible performance space is “warped” in the vicinity of the
constraint boundary. The value of the penalty increases as
the constraint boundary is approached. The penalty function
can include an interior and exterior penalty function. The
interior penalty function penalizes the performance as the
constraint boundary is approached from the feasible region.
In effect, the addition of the penalty function as an additional
term on the objective function “warps” the performance
surface near the constraint boundary. The “exterior” penalty
function adds a penalty only after the constraint boundary
has been crossed, and in increasing amounts as the optimi-
zation search ventures further into the infeasible region.
Exterior penalty functions have no impact on the perfor-
mance of vertices in the feasible region.

Prior art penalty functions are usually defined as some
function of the constraints, such as the sum of the constraints
squared times a scale factor. The penalty is added to the
performance of the objective function effectively warping
the search space to steer the set of vertices towards a feasible
optimum.

There are several problems with the prior art penalty
function approach. The most obvious problem is that by
warping the search space, the optimum can be relocated. The
warp can also cause very difficult terrain with sharp ridges.
Difficult terrain hinders most conventional optimization
search processes. Because of this, the penalty function is
usually applied gradually over several stages, starting with
a relatively small penalty that increases incrementally.

However, if the optimum lies on or near the constraint
boundary, as is often the case in a real system, this approach
must often be iterated many times in order for the optimi-
zation routine to effectively “hone in” on the true optimum.

Exterior penalty functions are sometimes more effective
than interior penalty functions because they only warp the
infeasible region. Exterior penalty functions, however, may
have a more difficult time of forcing the optimization search
to keep to the feasible side of the constraint boundary. In the
event that the objective function is undefined in the infea-
sible region, the exterior penalty function cannot be used.

As an advantage, my method does not use penalty func-
tions that warp the search space near the constraint bound-
ary.

Penalty Free Method

I provide additional move rules to allow vertices of my set
to converge to optima near or on the constraint boundary.
Specifically, my rules allow vertices to move along the

US 6,763,276 B1

11

boundary, or even cross the boundary into an infeasible
region. Sometimes, this boundary crossing into the infea-
sible region may even be encouraged to later find a better
optimum in the feasible region.

In order to implement these additional rules, I mark the
vertex with the worst performance in each partition and the
vertex with the best performance in each partition.
Furthermore, I mark the vertex with the overall worst
performance of the set of vertices and the vertex with the
overall best performance of the set of vertices. Partition
based marking requires more computation but leads to a less
aggressive search, while global based marking requires less
computation but leads to a more aggressive search.

If all vertices of the set are in the same partition, i.e., either
the independent, dependent, or unconstrained space, then
moves are made according to the method of FIG. 6, along
with the special rules described above.

If some of the vertices are in different partitions, then a
vertex at a lower level partition can only move to a higher
level partition if its performance is better than the vertex
with the best performance in the higher partition. This
allows my vertex set to smoothly move along the constraint
boundary in the direction of the feasible optimum. This is
not possible with the prior art techniques, which oscillate
wildly near the constraint boundary. The search can be made
more aggressive by only allowing this move if the perfor-
mance of the vertex becomes the overall best performance.

Vertices in a particular partition move only through the
centroid of other vertices in the same partition or higher
level partitions, thus the vertices in the lower level partitions
are not considered in the centroid calculation. This gives my
improved method a better sense of direction along the
“feasible” side of the constraint boundary. If there are less
than two vertices in the same or higher partitions, then other
vertices in the lower partitions can be considered in the
centroid calculation.

A vertex in a higher level partition may move freely,
without regard of normal performance criteria, to a lower
level partition, so long as the performance of the vertex at
the next location is better than the performance of the worst
vertex in the lower level partition. The search can be made
more aggressive by only allowing this move if the perfor-
mance of the vertex becomes better than the vertex with the
overall worst performance. Note, however, that the vertex
with the best performance of the set must always better its
performance before it is allowed to move. This gives my
improved method the ability to “straddle” and track a
constraint boundary.

If a set of vertices is contracted because the overall
performance is not improved in a cycle, then vertices in a
lower partition than the partition containing the overall best
vertex are over-contracted. This means that these vertices
move past the vertex with the overall best performance
rather than towards it. This helps these lower level vertices
to cross the constraint boundary towards feasibility.

This approach to handling constraints is fundamentally
different from the penalty function method and other
approaches known in the prior art. Instead of modifying the
search space, my method lets the optimization search deal
directly with an undistorted constraint boundary, thus requir-
ing no “add-on” penalty function feature.

Unique Hierarchical Levels of Performance

When using the fixed independent-dependent constraint
partitions as described above, each evaluation is defined by

10

15

20

25

30

35

40

45

50

55

60

65

12

two indicators: a level, and a performance as indicated in
Table A, and shown in the data element 509 of FIG. 5.

TABLE A
Level Type Performance Function
1 Independent Sum performances of violated
independent constraints
2 Dependent Sum performances of violated
dependent constraints
3 Feasible Objective function F(x)

To determine the performance 520 of a vertex, both the
level and performance can be considered. A hierarchy, from
bottom-to-top, is defined first by levels and then by perfor-
mances within a level: independent level, independent
performance, dependent level, dependent performance, fea-
sible performance.

The performance of two vertices is first compared accord-
ing to their levels. Specifically, the vertex in a partition with
a higher level is always the “better” vertex. Furthermore, if
the vertices are at the same level, their performances 520 can
be compared directly to determine the better vertex.

Generalized Constraint Levels

With generalized constraint levels, the objective function
and the constraints are arbitrarily grouped. Each group has
an associated hierarchical level. Evaluation of vertices is
then done according to the hierarchical groups. This parti-
tions the search space. For example, there can be more than
three groups and three levels, causing more than three
partitions. In many applications, a larger number of parti-
tions provides advantages over the fixed independent-
dependent-unconstrained partitions. Furthermore, the ability
to change the partitions and levels while searching allows
for dynamic and adaptive search techniques.

In this case, the groupings can be changed by the user, via
some user interface, or automatically by the search process
itself. Such an adaptive process can initially assign perfor-
mances of each constraint and the objective function to its
own partition and level and then later reassign the levels to,
for example, “very active,” “active,” “not so active, and
“inactive” partitions, as the search progresses. It is also
possible to change the level of a partition without changing
the partition itself.

Regardless of the type of search process for an optimum,
e.g., steepest ascent gradient, conjugate gradient, variable
metric, and sequential quadratic programming, see Press et
al. in Numerical Recipes in C, Cambridge University Press,
1992, the way in which the performance of a vertex is
evaluated will determine the decisions that are made and
inevitably the path to the optimum. Due to the sequential
nature of optimization techniques, any decision alterations
imply a different path. The more flexible the search process
is, the more possible paths it can follow, and, therefore, the
better the chances the search process has of reaching an
optimum.

When constraints are “active,” ranking and grouping of
constraints with my generalized constraint level method can
have a strong effect on changing a search process’ path,
thereby aiding in finding a solution and in improving the
performance of the system.

The optimization methods described herein work with all
types of objective functions and constraints. However, my
method is more efficient and robust than those of the prior
art when either the objective function F or any constraint C;

US 6,763,276 B1

13

is highly non-linear or non-differentiable, or noisy. Most
real-world practical systems, for example, a chemical plant,
are subject to noise during control, where repeated evalua-
tion of F or C, for identical design parameters, will often
give different performances.

The prior art methods concentrate exclusively on the
vertex with the worst performance. As a result, those meth-
ods have a tendency to lose width in one spatial dimension.
This loss of dimensionality restricts searching in that
direction, thus leading to difficulties in finding a solution.

My method trial moves all vertices before reordering the
set. Consequently, the effect of my improved method is a
more robust search that yields better performance.
Furthermore, by grouping constraints and applying the
described rules, my method can better find optima near
constraint boundaries, the typical situation in highly tuned
systems. Additionally, my method permits the constraints to
be dynamically changed in response to real-time changing
conditions, thus further enabling new paths to a more
optimal performance.

Global Optimization

So far I have described “greedy” search techniques to find
local optima. A known problem with greedy searches is that
there may be a better optimum elsewhere in the search
space. My search method can be applied to global optimi-
zation problems by making the search less greedy. Here, the
goal is to determine a global optimum among typically many
local optima.

This can be achieved by applying a global search strategy,
such as simulated annealing, sece Press et al. in Numerical
Recipes in C, Cambridge University Press, 1992.

I use a probability P of acceptance which determines
whether or not the current vertex is replaced by a next
vertex. If the next vertex provides a better performance, then
P=1, otherwise, P>0. In the latter case, the probability of
acceptance P is a function of the performances of the current
vertex and the next vertex, and an additional control
parameter, a “temperature” T.

In general, the lower the temperature T, the smaller the
probability for accepting the next vertex. While performing
the search, the temperature T is lowered in steps. In other
words, the performance of vertices is sometimes allowed to
degrade. However, the lower the temperature, the less likely
there will be an excursion through a worse performing
portion of the search space. Annealing allows my method to
escape from a local optimum in favor of finding a better,
more global optimum elsewhere. The novelty in my method
is in using the partitioned performances to make the global
search decisions rather than the scalar performances used in
the prior art.

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications may be
made within the spirit and scope of the invention. Therefore,
it is the object of the appended claims to cover all such
variations and modifications as come within the true spirit
and scope of the invention.

I claim:

1. A method for optimizing a system wherein perfor-
mances of n design parameters of an objective function
modeling the system are represented in a n-dimensional
search space, and a set of n+1 vertices are positioned in the
search space, and each vertex has an associated one of the
performances, comprising:

sorting the vertices in the set in a worst to best perfor-

mance order;

10

15

20

25

30

45

50

55

60

14

moving each vertex in the ordered set to a next position
if the performance at the next position is better than a
current performance of the vertex; and

repeating, in a cycle, the sorting and moving, until a

termination condition is reached.

2. The method of claim 1 further comprising:

determining a centroid of all vertices of the set except for

the vertex being moved; and

reflecting the vertex through the centroid to determine the

next position of the vertex.

3. The method of claim 2 further comprising:

multiplying a distance that the vertex is reflected by an

expansion factor to increase a spatial extent of the set
of vertices.

4. The method of claim 1 further comprising:

marking a particular vertex of the set as a best vertex if the

performance of the particular vertex is the best perfor-
mance.

5. The method of claim 4 wherein the best vertex is moved
away from the centroid.

6. The method of claim 5 wherein a distance that the
vertex is moved is equal to the distance from the vertex to
the centroid times an expansion factor.

7. The method of claim 4 further comprising:

moving each vertex of the set, other than the best vertex,

toward the best vertex when the performance of the
best vertex is unchanged during the cycle.

8. The method of claim 7 wherein a distance that a
particular vertex moves is equal to the distance from the
particular vertex to the best vertex multiplied by a contrac-
tion factor to decrease a spatial extent of the set of vertices.

9. The method of claim 1 further comprising:

positioning a first vertex in the search space at arbitrary

coordinates;

incrementing each coordinate of the vertex by a corre-

sponding step size to determine a position of a next
vertex; and

repeating the incrementing until all n+1 vertices of the set

are positioned in the search space.

10.The method of claim 9 wherein the step size is
proportional to a corresponding dimension of the corre-
sponding coordinate.

11. The method of claim 1 further comprising:

marking a particular vertex as a best vertex when the

performance of the particular vertex is the best

performance, and if the performance of the best vertex

is unchanged over a predetermined number of consecu-

tive cycles then:

deleting all vertices except the best vertex;

incrementing each coordinate of the best vertex by a
corresponding current size to determine a position of
a next vertex; and

repeating the incrementing until all n+1 vertices of the
set are repositioned in the search space.

12. The method of claim 1 further comprising:

increasing the number of vertices in the set if the number

of dimensions in the search space is greater than a
predetermined number.

13. The method of claim 1 wherein the system further
includes a plurality of constraints, and further comprising:

grouping the constraints and the objective function

according to a plurality of unique hierarchical levels
wherein the group including the objective function has
a highest level; and

evaluating the performance of a particular vertex, in a low

to high order of the levels, according to the groupings

US 6,763,276 B1

15

of the constraints and the objective function, and
assigning the evaluated performance and the associated
level to the particular vertex as soon as the evaluated
performance is negative, unless the associated level is
the highest level, in which case the assigned perfor-
mance is evaluated from the objective function to
partition the search space into a plurality of partitions
according to the levels.
14. The method of claim 13 further comprising:

moving a particular vertex within a particular partition
only if the performance of the vertex becomes better.
15. The method of claim 13 further comprising:

marking a particular vertex in each partition as a best
vertex of the partition if the particular vertex has the
best performance; and

marking a particular vertex in each partition as a worst
vertex of the partition if the particular vertex has the
worst performance.

16. The method of claim 15 further comprising:

moving a particular vertex from a particular partition at a
lower level to a partition at a higher level only if the
particular vertex becomes the best vertex in the parti-
tion at the higher level.

17. The method of claim 15 further comprising:

moving a particular vertex from a particular partition at a
higher level to a partition at a lower level only if the
performance of the particular vertex becomes better
than the worst vertex in the partition at the lower level.

18. The method of claim 13 further comprising:

marking a particular vertex as an overall best vertex if the
particular vertex has the best performance of any
vertex; and

marking a particular vertex as an overall worst vertex if
the particular vertex has the worst performance of any
vertex.

19. The method of claim 18 further comprising:

moving a particular vertex from a particular partition at a
lower level to a partition at a higher level only if the
particular vertex becomes the overall best vertex.

20. The method of claim 18 further comprising:

moving a particular vertex from a particular partition at a
higher level to a partition at a lower level only if the
performance of the particular vertex becomes better
than the overall worst vertex.

21. The method of any one of claims 13, 14, 15, 16, 17,

18, 19, 20 wherein the partitions include an independent
constrained partition having independent performances, a

10

15

35

40

16

dependent constrained partition having dependent
performances, and an unconstrained partition having uncon-
strained performances.
22. The method of claim 1 further comprising:
grouping the constraints and the objective function
according to a plurality of unique hierarchical levels
wherein the group including the objective function has
a highest level;

evaluating the performance of a particular vertex, in a low
to high order of the levels, according to the groupings
of the constraints and the objective function, and
assigning the evaluated performance and the associated
level to the particular vertex as soon as the evaluated
performance is negative, unless the associated level is
the highest level, in which case the assigned perfor-
mance is evaluated from the objective function to
partition the search space into a plurality of partitions
according to the levels;

marking a particular vertex of the set as a best vertex if the

performance of the particular vertex is the best perfor-
mance;

moving each vertex of the set at the same level as the best

vertex, other than the best vertex, toward the best
vertex when the performance of the best vertex is
unchanged during the cycle; and

reflecting each vertex of the set at a level lower than the

level of the best vertex through the best vertex when the
performance of the best vertex is unchanged during the
cycle.

23. The method of claim 22 wherein a distance that each
vertex is moved and reflected is multiplied by a contraction
factor to decrease a spatial extent of the set of vertices.

24. The method of claim 13 further comprising:

dynamically changing the grouping and levels while

moving the vertices.

25. The method of claim 13 wherein each move has an
associated probability of acceptance based on the perfor-
mance of each vertex at a current and next positions and a
control parameter.

26. The method of claim 13 further comprising:

determining a centroid of all vertices of the set except for

the vertex being moved and any vertex having a level
that is lower than the level of the vertex being moved;
and

reflecting the vertex being moved through the centroid to

determine the next position of the vertex.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

