C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

Copyright 2004-2016 Mitsubishi Electric Research Laboratories (MERL)
Saffron API

Version 4.0

Ronald Perry, Sarah Frisken, and Eric Chan

Description:

This file defines the application programming interface (API) for the Adaptively
Sampled Distance Field (ADF) type rendering system (a.k.a. Saffron). Saffron is a
cross-platform (i.e., 0S- and processor-independent) engine that provides
efficient, high quality, scalable type rendering with automatic hinting.

For an introduction to ADFs, see U.S. Patent 6,396,492 "Detail-Directed
Hierarchical Distance Fields", Sarah Frisken, Ronald Perry, and Thouis Jones
and "Adaptively Sampled Distance Fields: A General Representation of Shape for
Computer Graphics'"™, SIGGRAPH 2000 Conference Proceedings, Sarah Frisken, Ronald
Perry, Alyn Rockwood, and Thouis Jones. A brief overview follows.

We define a 2-dimensional signed distance field D representing a closed
2-dimensional shape S (such as a glyph) as a mapping D:RxR-->R for all points p
contained in RxR such that D(p) = sign(p) * min{]lp - qll: for all points q on
the zero-valued iso-surface (i.e., edge) of S}, sign(p) = {-1 if p is outside S,
+1 if p is inside S}, and ||-1]| is the Euclidean norm. Less formally, the
distance field of a glyph simply measures the minimum distance from any point p
in space to the edge of the glyph, where the sign of this distance is negative if
p is outside the glyph and positive if p is inside the glyph. ADFs are generated
by performing a detail-directed sampling of the shape’s distance field wherein
the sampled values (such as distances and reconstruction data) are stored in a
data structure for efficient processing. Distances at arbitrary points in the
field can then be reconstructed from the sampled values and used for processing
such as rendering and editing. The use of adaptive detail-directed sampling
permits higher sampling rates in regions of fine detail and lower sampling rates
where the distance field varies smoothly, thereby allowing very high accuracy
with minimal memory requirements. ADFs, like TrueType outlines, can be rendered
at any size and orientation.

ADF glyphs are rendered using a new distance-based antialiasing algorithm (see,
for example, U.S. Patent 7,034,845 "Method for Antialiasing an Object Represented
as a Two-Dimensional Distance Field in Image-Order™ by Ronald Perry and Sarah
Frisken, U.S. Patent 6,982,724 "Method for Antialiasing an Object Represented as
a Two-Dimensional Distance Field in Object-Order™ by Sarah Frisken and Ronald
Perry, and U.S. Patent 6,917,369 "Method and Apparatus for Rendering Cell-Based
Distance Fields Using Texture Mapping"™ by Ronald Perry and Sarah Frisken). Rather
than computing a coverage value at each sample point, we reconstruct the distance
at each sample point and then map the distance to a density value. Coverage-based
approaches require either a complex and expensive analytic filter or many
supersamples to approximate the coverage value at each sample point. ADF
rendering requires just a single distance reconstruction per sample and provides
quality comparable to exact analytic methods.

During ADF rendering, strong vertical and horizontal edges of glyphs and
characteristic distances (e.g., cap heights) of the typeface can be aligned to
the pixel grid to provide better contrast, uniform stroke weights, and consistent
characteristic distances. This process, referred to as "grid fitting®" in this
API, uses a set of "alignment zones"™ that we detect automatically from each ADF.
Standard Alignment Zones (SAZ), which are optimized for non-CJK glyphs, are
detected once per glyph in a preprocessing step. Multiple Alignment Zones (MAZ),

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

which are optimized for CJK glyphs, are detected dynamically during rendering.
Saffron also supports the rendering of application-hinted glyphs.

Glyphs are imported into Saffron as ADFPaths. ADFPaths can represent both
outline-based glyphs (e.g., from TrueType fonts) comprising a set of closed
contours and stroke-based glyphs comprising 1) a set of stroke skeletons that can
be either open or closed and 2) a set of stroke attributes, such as stroke width,
that determine how the stroke skeletons are rendered.

This APl is structured as a toolkit, and includes the following major functional
blocks:

1) Conversion of ADFPaths to ADFs

2) Rendering ADFs as density images

3) Determining alignment zones directly from ADFs, thereby enabling grid
fitting during ADF rendering

4) A dual caching system for ADFs and density images

Saffron supports two types of ADFs for representing glyphs: explicit ADFs and
implicit ADFs. A compile time Boolean flag (ADF_USE_IMPLICIT_ADFS) controls the
selection of which ADF type to use throughout the system. The usage note Explicit
and Implicit ADFs (see below) describes both ADF types and provides guidance for
selecting which ADF type best suits the needs of the application.

Saffron supports both CRT and LCD (i.e., sub-pixel) rendering. During sub-pixel
rendering, each color component is treated as a separate sample; these samples
are then combined to determine all the color components for the pixel. Sub-pixel
rendering increases the effective resolution of the display, thus enabling higher
quality type on displays with addressable components (e.g., LCDs).

Throughout this document we will refer to traditional pixel-based rendering as
CRT rendering (i.e., CRT mode) and sub-pixel rendering as LCD rendering (i.e.,
LCD mode). Saffron can apply sub-pixel rendering not only to LCD displays, but
to any type of display with addressable sub-pixels such as organic LEDs. The
list of supported LCD modes (e.g., ADF_REND_MODE_RGBv) is described in the
rendering section of this API. Note that LCD rendering can be used on CRT
displays even though the pixel components are not individually addressable:

the additional distance field samples result in a cleaner edge which many users
prefer.

Table of Contents:

- Usage Notes

- Explicit and Implicit ADFs

- Basic Data Flow and Processing Steps

- Compositing Glyph Density Images

- Combining Glyph Density Images

- Coordinate Systems

- Continuous Stroke Modulation

- Color Reduction

- Typesetting

- Rendering CJK Glyphs With Multiple Alignment Zones
Rendering Application-Hinted Glyphs

- Saffron APl Version Number

- ADF Type Selection (Explicit or Implicit)
- Library Component Selection

- Math Mode Selection

- CPU Byte Order Selection

- Memory Allocation

- Fundamental Data Types

- Initialization and Termination of the System
- Glyph Representation (ADFPaths)

- ADF Generation from ADFPaths

- Alignment Zones

- Density Images

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

//
//
//
//

- Rendering
- Dual Caching System
- Revision History

USAGE NOTE: EXPLICIT AND IMPLICIT ADFS

Saffron supports two types of ADFs for representing glyphs: explicit ADFs and
implicit ADFs. A compile time Boolean flag (ADF_USE_IMPLICIT_ADFS) controls the
selection of which ADF type to use throughout the system.

Explicit ADF generation uses top-down spatial subdivision to generate a spatial
hierarchy of explicit ADF cells, where each explicit ADF cell contains a set of
sampled distance values and a reconstruction method; explicit ADF rendering
reconstructs the distance field within each explicit ADF cell using its
reconstruction method and then maps the reconstructed distances to density
values.

In contrast, implicit ADF cells are not generated during generation (they are
generated on-demand during rendering). More specifically, implicit ADF generation
preprocesses an ADFPath (which represents a glyph); implicit ADF rendering
generates implicit ADF cells from the preprocessed ADFPath and renders each
implicit ADF cell by 1) reconstructing the distance field within the implicit ADF
cell using its reconstruction method and 2) mapping the reconstructed distances
to density values.

The following should be considered when selecting which ADF type to use:
1) Implicit ADFs support stroke-based glyphs; explicit ADFs do not.
2) Implicit ADFs support MAZ alignment zones; explicit ADFs do not.

3) Implicit ADFs can be processed internally using either floating point
arithmetic or fixed point arithmetic (see the Math Mode Selection section
below); explicit ADFs are always processed internally using floating point
arithmetic.

4) Implicit ADF generation is nearly instantaneous while explicit ADF generation
is In the range of 2000 explicit ADF glyphs per second (assuming level 4
explicit ADFs (see below) and a Pentium M 2.0 GHz CPU).

5) While both ADF types provide fast interactive rendering, implicit ADF
rendering is, in general, faster than explicit ADF rendering for large point
sizes. The crossover point in performance (i.e., the point size at which the
implicit ADF rendering speed and the explicit ADF rendering speed are roughly
equal) depends on both the current library implementation and system
characteristics such as CPU cache sizes. For optimal performance, applications
should be benchmarked and profiled to determine the appropriate ADF type.

6) Implicit ADFs always provide high quality rendering while the rendering
quality of explicit ADFs depends on the generation attributes (see
ADFGenAttrs) set by the application. In general, higher quality explicit ADFs
are larger and require longer generation times than lower quality explicit
ADFs.

7) In general, implicit ADFs are smaller than explicit ADFs. Implicit ADFs are
approximately the same size as their ADFPaths (in the range of 350 bytes to
1K bytes) while typical sizes for explicit ADFs of Latin glyphs range from
2K bytes (for level 4 explicit ADFs, which provide high quality rendering for
20 ppem and below) to 4K bytes (for level 7 explicit ADFs, which provide high
quality rendering for all ppems).

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

USAGE NOTE: BASIC DATA FLOW AND PROCESSING STEPS

To illustrate the basic data flow and processing steps when using Saffron, a
simple example for rendering with grid fitting is outlined here:

1) Initialize the system
2) Preprocess the required non-CJK glyphs to determine their SAZ alignment zones

- Initialize SAZ alignment zone detection for a specified typeface

- Detect the SAZ alignment zones for all required non-CJK glyphs in the
specified typeface

- Terminate SAZ alignment zone detection for the specified typeface

3) Create an ADF cache and a density image cache
4) Typeset and render each glyph

- Query the density image cache for the rendered glyph
- Upon a cache miss
- Query the ADF cache for the glyph®"s ADF
- Upon a cache miss
- Generate the glyph®"s ADF from its ADFPath
- Insert the glyph®"s ADF into the ADF cache
- IF the glyph is a CJK glyph, enable MAZ alignment zone detection, which
is performed dynamically during rendering (i.e., the next step)
- Render the glyph"s ADF into a density image using the glyph"s
SAZ or MAZ alignment zones for grid fitting
- Insert the density image into the density image cache
- Composite the glyph®s density image into the display buffer
- Advance the pen position using typesetting adjustments due to grid fitting

5) Destroy the caches

6) Terminate the system

USAGE NOTE: COMPOSITING GLYPH DENSITY IMAGES

The Saffron type system renders a glyph (represented as an ADF) according to

a set of rendering parameters to produce a density image. A density image
records a "density” value for each component of each pixel which can be treated
as an alpha value. Density images can be used by the application to blend a
foreground color (e.g., a text color) with a background color or a background
image to produce a colored image of the rendered glyph. This colored image can
then be BLTed to the display. Note that rendered density images can be used
directly for blending white text on a background or inverted (i.e., 255 -
density) to blend black text on a background.

The blending, or "compositing®, can be performed in software using the density
value for each pixel (in CRT mode) or pixel component (in LCD mode) to blend
the corresponding background and foreground pixels or pixel components. Some
examples of how the color of a destination pixel can be determined from the
corresponding density image pixel, the foreground color, and the background
color (or background image pixel) are provided here.

When rendering in CRT mode, the density image has one component per pixel:

A _density. When rendering in LCD mode (i.e., sub-pixel rendering), the density
image has four components per pixel: R_density, G_density, B_density, and

A _density, where A density is set to the maximum of R_density, G_density, and
B_density. The foreground color is denoted "fg" and the background color is
denoted "bg". All color and density values range from O to 255.

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

ALPHA BLEND:

Alpha blending uses the density value of each pixel or each pixel component
to blend the foreground and background pixel colors to determine the
destination pixel color (R, G, B, A). Note that alpha blending can be avoided
for each pixel if the pixel"s A_density is zero.

For CRT mode:

R <-- R_bg + (R_fg - R_bg) * A density / 255
G <-- G_bg + (G_fg - G_bg) * A_density / 255
B <-- B bg + (B_fg - B_bg) * A density / 255
A <-- A_bg + (A_fg - A_bg) * A_density / 255
For LCD mode:
R <-- R_bg + (R_fg - R_bg) * R _density / 255
G <-- G_bg + (G_fg - G_bg) * G_density / 255
B <-- B bg + (B_fg - B_bg) * B_density / 255
A <-- A_bg + (A_fg - A_bg) * A_density / 255
ALPHA TEST:

For white text on a black background or black text on a white background,
alpha blending can be replaced by a simple alpha test or a simple alpha
test with an inversion as shown here.

White text on a black background
For CRT mode:
if (A_density > 0) {
<-- A_density
<-- A _density
<-- A_density
<-- A _density

> WO

}

For LCD mode:

if (A_density > 0) {
<-- R_density
<-- G_density
<-- B_density
<-- A _density

> WO

}

Black text on a white background
For CRT mode:
if (A_density > 0) {
<-- 255 - A density
<-- 255 - A_density
<-- 255 - A density
<-- A_density

> WO

}

For LCD mode:

if (A_density > 0) {
<-- 255 - R_density
<-- 255 - G_density
<-- 255 - B_density
<-- A_density

> W oo

MINMAX BLEND:

For white text on a black background, minmax blending determines the destination
pixel color (R, G, B, A) by computing the maximum of the density value of each
pixel or pixel component and the background pixel color. For black text on a

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

white background, minmax blending determines the destination pixel color (R, G,
B, A) by computing the minimum of the inverted density value of each pixel or
pixel component and the background pixel color.

White text on a black background
For CRT mode:
R <-- maximum(R_bg, A_density)
G <-- maximum(G_bg, A_density)
B <-- maximum(B_bg, A_density)
A <-- maximum(A_bg, A _density)

For LCD mode:

<-- maximum(R_bg, R_density)
<-- maximum(G_bg, G_density)
<-- maximum(B_bg, B_density)
<-- maximum(A_bg, A _density)

> WO

Black text on a white background
For CRT mode:
R <-- minimum(R_bg, 255 - A _density)
G <-- minimum(G_bg, 255 - A_density)
B <-- minimum(B_bg, 255 - A _density)
A <-- minimum(A_bg, A_density)

For LCD mode:

<-- minimum(R_bg, 255 - R_density)
<-- minimum(G_bg, 255 - G_density)
<-- minimum(B_bg, 255 - B_density)
<-- minimum(A_bg, A_density)

> WO

INVERSE MULTIPLY:

Black text can also be composited by first inverting the density image and
then multiplying the background color by the inverted density. The result of
the multiply is then normalized to [0, 255]. This compositing method uses the
glyph density image to darken the underlying background image. Note that the
inverse multiply can be avoided for each pixel if the pixel"s A _density is
zero.

For CRT mode:

R <-- R_bg * (255 - A_density) / 255
G <-- G_bg * (255 - A_density) / 255
B <-- B_bg * (255 - A _density) / 255
A <-- A_bg * A_density / 255
For LCD mode:
R <-- R_bg * (255 - R_density) / 255
G <-- G_bg * (255 - G_density) / 255
B <-- B_bg * (255 - B_density) / 255
A <-- A_bg * A_density / 255

SPECIAL EFFECTS:

Density images can be used in a variety of blending methods. For example, density
images make effective masks when a direct MULTIPLY, rather than an INVERSE
MULTIPLY, is used for blending.

USAGE NOTE: COMBINING GLYPH DENSITY IMAGES

When glyph density images overlap, they can either be composited sequentially
onto the background image (as described above), or they can be combined first in
a "combining buffer® and then the combining buffer can be composited onto the
background image in a single pass. There are various ways for combining

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

// overlapping density values in the combining buffer. For example, density values
// can be combined using a CSG union operation, which selects the maximum density
// value for each pixel (CRT mode) or pixel component (LCD mode). In addition,

// various other methods can be used as described below.

// Density values in the combining buffer are initialized to zero. Then, for each
// pixel of a density image being combined, the corresponding pixel of the
// combining buffer is set according to one of the following methods.

// MAXIMUM DENSITY:

// This method selects the maximum density value for each pixel or pixel component
// and corresponds to a CSG union operation.

//

// For CRT mode:

// A_combined <-- maximum(A_combined, A_density)
//

// For LCD mode:

// R_combined <-- maximum(R_combined, R_density)
// G_combined <-- maximum(G_combined, G_density)
// B_combined <-- maximum(B_combined, B_density)
// A_combined <-- maximum(R_combined, G_combined, B_combined)
//

//

// AVERAGE DENSITY:

//

// This method can provide better antialiasing when rendered glyphs overlap and
// can reduce color fringing in LCD mode.

//

// For CRT mode:

// A _combined <-- average(A_combined, A_density)
//

// For LCD mode:

// R_combined <-- average(R_combined, R_density)
// G_combined <-- average(G_combined, G_density)
// B_combined <-- average(B_combined, B_density)
// A_combined <-- maximum(R_combined, G_combined, B_combined)
//

//

// INVERSE MULTIPLY:

//

// This method is a generalization of inverse multiply for compositing (as

// described above); it can be used to perform a darkening blend of density

// images. Like average density, it can provide better antialiasing when rendered
// glyphs overlap and can reduce color fringing in LCD mode.

//

// For CRT mode:

// A_combined <-- 255 - (255 - A_combined) * (255 - A_density) / 255

//

// For LCD mode:

// R_combined <-- 255 - (255 - R_combined) * (255 - R _density) / 255

// G_combined <-- 255 - (255 - G_combined) * (255 - G_density) / 255

// B_combined <-- 255 - (255 - B_combined) * (255 - B_density) / 255

// A_combined <-- maximum(R_combined, G_combined, B_combined)

Y e it et T e L
[
// USAGE NOTE: COORDINATE SYSTEMS
[
Y e it et

// All coordinate systems within this library are Cartesian: the x-axis increases
// from left to right, and the y-axis increases from bottom to top. The major
// coordinate systems are enumerated here.

// ADF COORDINATES:

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

ADFs are represented in a 2-dimensional floating point coordinate system defined
over [0.0, 1.0] x [0.0, 1.0]. Distance values in an ADF are measured in this
coordinate system.

FONT UNITS:

Glyphs are represented by the ADFPath data structure. Points that define a glyph
are located on a grid whose size is defined by the creator of the font. The units
of this grid are conventionally referred to as font units.

When creating the glyph, the font creator makes use of an imaginary square that
is derived from the old typographic concept of the em square. This square can be
thought of as a tablet on which the characters are drawn, although it is
permissible for characters to extend beyond the tablet or em square.

In order to scale glyphs to a specified point size, this APl requires the number
of font units per em square (e.g., 2048 in the core Apple and Microsoft TTF
fonts). To support both integer-based (e.g., TTF) and floating point-based (e.g.,
Type 1) font representations, this library uses floating point font units. It is
assumed that the glyph origin (i.e., the reference point for typesetting) lies at
(0,0) in font units.

INTEGER PIXEL COORDINATES:

The image origin of a density image, which is used for positioning the image
during compositing, is represented in integer pixel coordinates. The image
origin is the bottom-left corner of the image.

FLOATING POINT PIXEL COORDINATES:

Glyph pen positions for typesetting (i.e., the locations of the glyph origins)
are specified in floating point pixel coordinates. When grid fitting, glyph pen
position adjustments are measured in floating point pixel coordinates; glyph
scale adjustments scale from font units to floating point pixel coordinates.
These grid Ffitting adjustments can be used by the application when typesetting.

The Saffron type system exploits the inherent properties of distance fields to
provide "Continuous Stroke Modulation®™ (CSM), i.e., continuous modulation of
both stroke weight and edge sharpness. CSM uses three rendering parameters to
control the mapping of ADF distances to glyph density values. Optimal values
for these parameters are highly subjective; they can depend on user preferences,
lighting conditions, display properties, typeface, foreground and background
colors, and point size. ldeally, an application would provide support for users
to tune CSM parameters according to personal preferences. However, under most
circumstances, high quality type can be achieved with a small set of default
parameters that can be preset by the application.

The function that maps ADF distances to density values has an outside cutoff
value, below which densities are set to zero, and an inside cutoff value, above
which densities are set to a maximum density value (e.g., 255). Between these two
cutoff values, the mapping function is a gamma curve ranging from zero at the
outside cutoff value to the maximum density at the inside cutoff value. The shape
of the curve is governed by a gamma exponent; when the exponent is 1.0, the curve
is linear.

Adjusting the outside and inside cutoff values affects stroke weight and edge
sharpness. The spacing between these two parameters is comparable to twice the
filter radius of classic antialiasing methods; a narrow spacing provides a
sharper edge while a wider spacing provides a softer, more filtered edge. When
the spacing is zero, the resulting density image is a bi-level bitmap. When the

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

spacing is very wide, the resulting density image has a watercolor-like edge.
Typically, users prefer sharp, high contrast edges at small point sizes and
softer edges for larger point sizes and for animated text. Hence, to achieve
optimal quality, the default CSM parameters preset by the application should be
point size dependent. Note that outside and inside cutoff values are specified in
floating point pixel coordinates.

Because a glyph"s edge lies at the zero-valued iso-surface of its corresponding
ADF, the outside cutoff value typically has a negative value, the inside cutoff
value typically has a positive value, and their midpoint typically lies near
zero. Adjusting these parameters to shift the midpoint towards negative infinity
will increase the stroke weight; shifting the midpoint towards positive infinity
will decrease the stroke weight. Note that the outside cutoff value should always
be less than or equal to the inside cutoff value.

Under most circumstances, a linear mapping from distance to density (i.e., a
gamma exponent equal to 1.0) is recommended. The gamma exponent can be used to
compensate for the non-linear characteristics of CRT and LCD displays.

As noted above, Saffron supports sub-pixel rendering for LCD displays. Sub-pixel
rendering increases the effective resolution of the display, but it can also lead
to undesirable "color fringing® artifacts. These artifacts appear because the
individual sub-pixel components are set to different values. Color fringing tends
to be more noticeable at smaller point sizes and when using typefaces with thin
strokes, such as Monotype®s Courier New (Version 2.90).

To combat this problem, Saffron provides a color reduction feature that analyzes
the amount of color present in the rendered pixels and reduces the color if
necessary. This feature is user-controllable via two attributes in the
ADFRenderAttrs data structure: useColorReduction and colorReductionAmt.

The useColorReduction attribute is a Boolean flag that turns the color reduction
feature on or off; setting this attribute to true (i.e., a non-zero value)
enables color reduction, and setting it to false (i.e., zero) disables color
reduction. If set to false, the colorReductionAmt attribute (described below) is
ignored.

The colorReductionAmt attribute is a floating point value in the range [0, 1]
that controls how much color reduction to perform. When this attribute is set to
0, minimum color reduction is applied. When this attribute is set to 1, maximum
color reduction is applied: pixels will be rendered completely desaturated (i.e.,
no color at all). Larger values are usually needed at smaller point sizes and for
typefaces with thin strokes.

It is important to note that when the useColorReduction attribute is set to true,
Saffron always performs some amount of color reduction, even when the
colorReductionAmt attribute is set to its minimum value of O. In other words,
turning on color reduction and setting the colorReductionAmt attribute to O is
not equivalent to turning off color reduction altogether (i.e., by setting the
useColorReduction Boolean attribute to false).

Also note that setting the useColorReduction attribute to true and the
colorReductionAmt attribute to 1 (when LCD rendering) is not equivalent to CRT
rendering. The rendered text will appear different because 3 samples are used per
pixel in the former case, whereas only 1 sample is used per pixel in the latter
case. In general, rendering quality will be higher in the former case, but
performance will be slower.

Finally, the color reduction feature is only relevant to LCD rendering. The two
attributes described above are ignored entirely during CRT rendering.

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 10

Although this library does not typeset glyphs, it provides feedback to the
application that can be used during typesetting; we therefore introduce some
basic concepts and terminology here. For more details, see, e.g., Donald E.
Knuth, "Tex and Metafont: New Directions in Typesetting', Digital Press.

In typesetting, the "baseline®™ of a line of text is an imaginary line that is
used to guide the placement of glyphs. The baseline can be horizontal (e.g., when
typesetting Latin fonts) or vertical (e.g., when typesetting Japanese fonts). The
"pen position® is a virtual point located on the baseline that is used to locate
glyphs. Conventionally (and in this library), the pen position determines the
placement of the glyph origin.

Text is typeset and rendered by incrementing the pen position -- either to the
left or right for horizontal baselines, or up or down for vertical baselines. The
distance between two successive pen positions is glyph-specific and is called the
"advance width".

In this library, pen positions are specified by the application for each glyph to
be rendered. Adjustments to these pen positions (which consist of incremental
scales and translations) may be required depending on the application®s use of
grid fitting, as explained in the following three cases:

1) When grid fitting is disabled, glyph density images are rendered with glyph
origins placed precisely at the specified pen positions. In this case, the
grid fitting translation adjustments are set to zero and the grid fitting
scale adjustments are effectively set to one.

2) When grid fitting is enabled using SAZ alignment zones, glyphs may be
incrementally scaled and translated to align strong vertical and horizontal
glyph edges and characteristic distances (e.g., cap heights) to the pixel grid
or to the sub-pixel grid, thereby providing better contrast, uniform stroke
weights, and consistent characteristic distances. The incremental scale and
translation for a glyph may affect the glyph®"s advance width (and other font
metrics such as the glyph®"s "kerning value®) which, in turn, may affect how
the application sets subsequent pen positions. Therefore, this library returns
grid alignment adjustments for each glyph (i.e., adjustments (in x and y) to
the glyph®s pen position and scale) for use in typesetting.

3) When grid fitting is enabled using MAZ alignment zones, strong vertical and
horizontal glyph edges will be detected and aligned to the pixel grid
dynamically during rendering, thereby providing better contrast and uniform
stroke weights. Unlike case 2 above, grid fitting using MAZ alignment zones
does not require changes to the pen position, advance width, or other font
metrics. Therefore, this library returns grid fitting translation adjustments
that are set to zero and grid fitting scale adjustments that are effectively
set to one for each glyph. Applications that apply these grid fitting
adjustments during typesetting will obtain the same results (i.e., the same
text layout) as if grid fitting is disabled. Consequently, enabling MAZ grid
fitting improves the appearance of glyphs without affecting their placement.

While grid fitting is advised for small point sizes (e.g., less than 30 point on
a 72 dpi device), it is not necessary for larger point sizes, rotated glyphs, or
animated type. Hence, there are four common scenarios regarding grid fitting and
the use of grid alignment adjustments:

1) Grid fitting is disabled -- in this scenario, each glyph is placed precisely
at the requested pen position and the grid alignment adjustments can be
ignored or applied with identical results. As a consequence, a prescribed
layout can be maintained exactly but the rendering quality is compromised at
small point sizes.

2) Grid fitting is enabled using SAZ alignment zones and the grid alignment
adjustments are used for typesetting -- in this scenario, each glyph"s advance
width (and other font metrics) are modified according to the glyph alignment
adjustments and are used for determining subsequent pen positions. For
example, assuming horizontal baselines, if the requested pen position is
(penX,penY) and the glyph"s advance width is advanceW, the pen position for

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 11

the next glyph is computed as nextPenX <-- penX + adjustX + advanceW *
adjustScaleX, where adjustX is the x glyph alignment adjustment for
translation and adjustScaleX is the x glyph alignment adjustment for scaling.
Note that nextPenY <-- penY (i.e., penY is not adjusted) so that a consistent
horizontal baseline is maintained. Using the grid alignment adjustments
provides optimal typesetting and is strongly recommended in circumstances
where a prescribed layout is not mandated.

3) CGrid fitting is enabled using SAZ alignment zones and the grid alignment
adjustments are ignored -- in this scenario, each glyph is placed precisely at
the requested pen position which allows the application to maintain a
prescribed layout. Note, however, when grid Ffitting to the pixel grid,
sub-optimal inter-character spacing occurs due to glyph translations of at
most half a pixel which are performed during grid fitting. The inter-character
spacing can be improved by grid fitting to the sub-pixel grid, in which case
the glyph translations due to grid fitting are at most one-sixth of a pixel.
However, grid fitting to the sub-pixel grid results in softer edges and more
color fringing (in LCD mode). In addition, grid fitting to the sub-pixel grid
requires more memory when caching glyph density images since each glyph can be
aligned to three different sub-pixels.

4) Grid Fitting is enabled using MAZ alignment zones -- in this scenario, each
glyph is placed precisely at the requested pen position and the grid alignment
adjustments can be ignored or applied with identical results. Consequently,
enabling MAZ grid fitting improves the appearance of glyphs without affecting
their placement.

When typesetting text at small point sizes, it is important to note that
antialiasing increases the perceived size of each glyph, thereby decreasing
the space between adjacent characters. Adding extra space (e.g., equal to the
filter radius) between glyphs during typesetting can result in more readable
text.

Finally, optimal metric-preserving non-CJK typesetting when grid fitting requires
more than just placing glyphs at pen positions mandated by a prescribed layout
(see, e.g., Microsoft®"s approach for formatting text in GDI+ which adjusts space
bands during glyph placement).

If requested, MAZ alignment zones are detected and applied dynamically to glyphs
during rendering. This automatic grid Ffitting process significantly improves the
appearance of both outline-based CJK glyphs and stroke-based CJK glyphs. Although
the MAZ alignment zone detection and grid fitting system can be applied to any
glyph (including non-CJK glyphs), the system is designed and optimized for CJK
glyphs. Applications are strongly discouraged from using MAZ alignment zones to
grid fit non-CJK glyphs.

Grid fitting using MAZ alignment zones can be enabled by setting the gridFitType
element of the ADFRenderAttrs data structure to ADF_GRID _FIT_MAZ PIXEL (see the
Rendering section below for details).

There are two issues that applications need to be aware of when using MAZ
alignment zones:

1) In general, this library returns grid fitting adjustments which may be used by
the application to perform typesetting (i.e., to compute the pen position of
each glyph). When grid fitting is enabled using MAZ alignment zones, this
library returns grid fitting translation adjustments that are set to zero and
grid fitting scale adjustments that are effectively set to one. Applications
that apply these grid fitting adjustments during typesetting will obtain the
same results (i.e., the same text layout) as if grid Fitting is disabled.
Consequently, MAZ alignment zones improve the appearance of glyphs without
affecting their placement.

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

// 2) The "alignment behavior®™ of the MAZ alignment zone detection and grid fitting

// system (i.e., the manner in which strong vertical and horizontal glyph edges
// are aligned to the pixel grid) is independent of the requested pen position.
// For example, the same glyph placed at two different pen positions (e.g.,

// (20.7,25.8) and (30.2,29.3)) will appear identical when rendered.

// Consequently, when caching density images, only one version of the glyph needs
// to be stored into the cache.

S~ —
[
// USAGE NOTE: RENDERING APPLICATION-HINTED GLYPHS
[
Y e it et

// Applications can perform their own grid fitting (e.g., by using TrueType hints)
// instead of using the automatic hinting (based on SAZ or MAZ alignment zones)

// provided by this library. This is useful for Unicode character sets not supported
// by the current implementations of the SAZ and MAZ alignment zone detection and
// grid fitting systems. Applications that perform their own grid fitting must

// follow certain steps to ensure that this library renders application-hinted

// glyphs correctly. These steps are described below in the Rendering section.

[
// To avoid multiple inclusion of header files

#ifndef _ADF_TYPE_SYSTEM_
#define _ADF_TYPE_SYSTEM_

#ifdef _ _cplusplus
extern "C" {

#endif

[———mm e -
// SAFFRON APl VERSION NUMBER

[———mm e -
[————m -

// The 16 most significant bits of ADF_API_VER_NUMBER identify the major revision
// number of the Saffron APl; the 16 least significant bits of ADF_API_VER_NUMBER
// identify the minor revision number of the Saffron API.

// This is version 4.0 of the API.

// The compile time Boolean flag used to control which type of ADF to use throughout
// the system (if true: use implicit ADFs, if false: use explicit ADFs)

// This APl contains a set of compile-time switches that can be used to enable or
// disable the implementations of specific library features. These features
// include:

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

//

// - The dual caching system

// - The library validation system

// - The stylized stroke font (SSF) rendering system

// - The SAZ alignment zone detection system

// - The MAZ alignment zone detection and grid fitting system for outline-based
// glyphs

// - The MAZ alignment zone detection and grid fitting system for uniform-width
// stroke-based glyphs

// - The MAZ alignment zone detection and grid fitting system for stylized

// stroke-based glyphs

//

// The purpose of these compile-time switches is to allow applications to optimize
// this library®"s object code size.

// Some applications may not require all features of this library. For example,

// applications that implement their own caches may not need this library"s dual

// caching system. Setting ADF_ENABLE_DUAL_CACHING to false (see below) will exclude
// the implementation of the dual caching system from the compiled object code,

// thereby reducing object code size.

// The compile time Boolean flag used to control whether the implementation of the
// dual caching system is enabled (if true: included, if false: excluded). The

// Boolean flag must be set to true to enable the implementations of the following
// APl functions:

//

// - ADFCreateCache()

// - ADFDestroyCache()

// - ADFGetCacheElement()
// - ADFInsertCacheElement()
// - ADFFlushCacheElement()
// - ADFFlushCacheAll ()

// - ADFGetCacheState()

// - ADFGetCacheKeys()

//

// For applications that intend to use this library®s dual caching system, this
// Boolean flag must be set to true. For applications that intend to use their own
// caching systems or do not require caching, this Boolean flag should be set to
// false.

// The compile time Boolean flag used to control whether the implementation of the
// library validation system is enabled (if true: included, if false: excluded). The
// Boolean flag must be set to true to enable the implementations of the following
// Tunctions in ADFExplicit.c:

//

// - ADFDrawADFAndAlgnZonesExplicit()

// - DrawADFGrid()

// - RecursiveDrawADFGrid()

//

// and the following functions in ADFImplicitFloat.c:
//

// - ADFDrawADFAndAlgnZoneslimplicit()

//

// For most applications, this Boolean flag should be set to false.

// The compile time Boolean flag used to control whether the implementation of the

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

// stylized stroke font renderer is enabled (if true: included, if false: excluded).
// For applications that require rendering stylized stroke-based glyphs, this

// Boolean flag must be set to true. For applications that do not require rendering
// stylized stroke-based glyphs, this Boolean flag should be set to false.

// The compile time Boolean flag used to control whether the implementation of the
// SAZ alignment zone detection system is enabled (if true: included, if false:

// excluded). The Boolean flag must be set to true to enable the implementations of
// the following API functions:

//

// - ADFInitAlgnZoneDetection()
// - ADFDetectAlgnZones()

// - ADFTermAlgnZoneDetection()
//

// For applications that require the detection of SAZ alignment zones, this Boolean
// flag must be set to true. For applications that do not require the detection of
// SAZ alignment zones, this Boolean flag should be set to false.

// Note that this Boolean flag affects only the detection of SAZ alignment zones,

// not the application of SAZ alignment zones during grid fitting, which occurs when
// rendering. Existing (i.e., preprocessed) SAZ alignment zones can be used to

// perform grid fitting even when this Boolean flag is set to false.

// The compile time Boolean flag used to control whether the implementation of the
// MAZ alignment zone detection and grid fitting system for outline-based glyphs is
// enabled (if true: included, if false: excluded). For applications that require
// automatic grid fitting for outline-based glyphs using MAZ alignment zones (e.g.,
// for CJIK typefaces), this Boolean flag must be set to true. For applications that
// do not require automatic grid fitting for outline-based glyphs using MAZ

// alignment zones, this Boolean flag should be set to false.

// The compile time Boolean flag used to control whether the implementation of the
// MNAZ alignment zone detection and grid fitting system for uniform-width

// stroke-based glyphs is enabled (if true: included, if false: excluded). For

// applications that require automatic grid fitting for uniform-width stroke-based
// glyphs using MAZ alignment zones (e.g., for CJK typefaces), this Boolean flag

// must be set to true. For applications that do not require automatic grid fitting
// for uniform-width stroke-based glyphs using MAZ alignment zones, this Boolean
// flag should be set to false.

// The compile time Boolean flag used to control whether the implementation of the
// MAZ alignment zone detection and grid fitting system for stylized stroke-based

// glyphs is enabled (if true: included, if false: excluded). For applications that
// require automatic grid fitting for stylized stroke-based glyphs using MAZ

// alignment zones (e.g., for CJK typefaces), this Boolean flag must be set to true.
// For applications that do not require automatic grid fitting for stylized

// stroke-based glyphs using MAZ alignment zones, this Boolean flag should be set to
// false.

#define ADF_ENABLE_MAZ_STYLIZED_STROKES 1

14

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

// Explicit ADFs are always processed internally using floating point arithmetic.
// Implicit ADFs, however, can be processed internally using either floating point
// arithmetic or fixed point arithmetic. The latter option provides better

// performance on systems that lack floating point hardware support.

// When fixed point arithmetic is enabled, applications must ensure that certain
// rendering parameters lie within specific ranges. These range requirements are
// described below.

// The ADF_MATH_MODE macro controls the type of arithmetic used internally by the
// following APl functions:

//

// - ADFGenerateADF()

// - ADFRenderSetup()

// - ADFRenderSetupFromPath()
// - ADFRenderGlyph(Q)

// - ADFPositionCachedImage()
// - ADFInitAlgnZoneDetection()
// - ADFDetectAlgnZones()

//

// ADF_MATH_MODE must be set to one of the following constants:
//

// - ADF_MATH_FLOAT

// - ADF_MATH_FIXED_C_32

// - ADF_MATH_FIXED_C_64

// - ADF_MATH_FIXED_ASM_X86

//

// 1 f ADF_MATH_MODE is set to ADF_MATH_FLOAT, this library uses a floating point
// implementation for the above APl functions.

// | ADF_MATH_MODE 1is set to ADF_MATH_FIXED_C_32, this library uses a fixed point
// implementation for the above APl functions. This fixed point implementation is
// written in ANSI C and is portable across systems that support 32-bit integers and
// two"s complement arithmetic.

// 1f ADF_MATH_MODE is set to ADF_MATH_FIXED_C_64, this library uses a fixed point
// implementation for the above APl functions. This fixed point implementation is
// portable across systems that support 32-bit integers, 64-bit integers, and two"s
// complement arithmetic. Applications must define ADF_164 appropriately (see

// below). This implementation requires that the system performs sign extension when
// the left operand of a right shift is a signed integer. In general, this

// implementation is significantly faster than ADF_MATH_FIXED_C_32.

// 1f ADF_MATH_MODE is set to ADF_MATH_FIXED_ASM_X86, this library uses a fixed

// point implementation for the above APl functions. This fixed point implementation
// is written in optimized x86 assembly. Applications must define ADF_164

// appropriately (see below). This implementation compiles only to x86-based systems
// (e.g., Pentium M systems) and is usually significantly faster than

// ADF_MATH_FIXED_C_64.

// All of the fixed point implementations provide bit-identical results with each
// other.

// Note that the other API functions (i.e., all APl functions described in this file
// except the ones listed above) use only integer arithmetic and therefore ignore
// the setting of ADF_MATH_MODE.

// 1f ADF_USE_IMPLICIT_ADFS is false, then ADF_MATH_MODE must be set to

// ADF_MATH_FLOAT.

// When fixed point arithmetic is enabled, applications must ensure that certain

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 16

// rendering parameters lie within specific ranges. These range requirements are
// as follows:

//

// 1. All floating point elements in the ADFRenderAttrs and ADFPath data

// structures (see below) must be in the range [-32767, 32767].

//

// 2. The scaleX and scaleY elements in the ADFRenderAttrs data structure must be
// non-negative.

//

// 3. The outsideCutoff and insideCutoff elements in the ADFRenderAttrs data

// structure must be in the range [-20, 20]. Furthermore, outsideCutoff must be
// less than or equal to insideCutoff.

//

// 4. The gamma element in the ADFRenderAttrs data structure must be positive.

//

// 5. The pointSize, dpi, scaleX, and scaleY elements in the ADFRenderAttrs data
// structure must satisfy the following two inequalities:

//

// 0 <= (pointSize * dpi * scaleX / 72) <= 2048

// 0 <= (pointSize * dpi * scaleY / 72) <= 2048

//

// For example, if dpi is 72 and scaleX and scaleY are both 1, then pointSize
// must lie in the range [0, 2048].

//

// IT the ADFPath represents a stroke-based glyph, then the pointSize, dpi,

// scaleX, and scaleY elements of the ADFRenderAttrs data structure and the

// pathWidth and fontUnitsPerEM elements of the ADFPath data structure must

// also satisfy the following two inequalities:

//

// 0 <= (pointSize * dpi * scaleX * pathWidth / fontUnitsPerEM) <= 7200

// 0 <= (pointSize * dpi * scaleY * pathWidth / fontUnitsPerEM) <= 7200

//

// 6. The fontUnitsPerEM element in the ADFPath data structure must lie in the

// range (0,2048].
[
Y e it et
#define ADF_MATH_FLOAT 0

#define ADF_MATH_FIXED_C_32 1

#define ADF_MATH_FIXED_C_64 2

#define ADF_MATH_FIXED_ASM_X86 3
[
Y e it et
#define ADF_MATH_MODE ADF_MATH_FLOAT

Y e it et T e L
[

// Check at compile time that fixed point arithmetic is not being used to process
// explicit ADFs

#if ((ADF_USE_IMPLICIT_ADFS == 0) && (ADF_MATH_MODE != ADF_MATH_FLOAT))
#error "Fixed point arithmetic is not supported for explicit ADFs."
#endif

// Applications should set ADF_INLINE to the keyword used by their compiler to
// identify inline functions. The default setting is _ _inline, the keyword used by
// the Microsoft Visual Studio 6.0 compiler to identify inline functions.

// Applications should set ADF_I164 to the keyword used by their compiler to
// represent a 64-bit signed integer. The default setting is __int64, the keyword
// used by the Microsoft Visual Studio 6.0 compiler to represent a 64-bit signed

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 17

// integer.

// Applications must specify the CPU byte order by setting the ADF_CPU_BYTE_ORDER
// define accordingly

2 ..
#define ADF_LITTLE_ENDIAN O
#define ADF_BIG_ENDIAN 1

#define ADF_CPU_BYTE_ORDER ADF_LITTLE_ENDIAN

// The macros described below are used by this system to perform all memory

// allocation tasks. The first argument to each macro is an opaque pointer applnst
// to application specific instance data which is specified by the application when
// the ADF font rendering system is initialized (i.e., when ADFInitSystem() is

// invoked). applnst can be used by the application if it chooses to replace the

// default memory allocation macro definitions with a custom memory management

// system tailored specifically to its needs. If the default memory allocation macro
// definitions are used, applnst is ignored.

// ADF_ALLOC() returns a pointer to space for an object of size numBytes, or NULL
// 1T the request cannot be satisfied. The space is uninitialized.

// ADF_CALLOC() returns a pointer to space for an array of numElems elements, each
// of length bytesPerElem bytes, or NULL if the request cannot be satisfied. Each
// element is initialized to O.

// ADF_FREE() deallocates the space pointed to by object; it does nothing if object
// is NULL. object must be a pointer to space previously allocated by ADF_ALLOC(Q),
// ADF_CALLOC(), or ADF_REALLOC(Q).

// ADF_REALLOC() changes the size of object to numBytes. The contents of object will
// be unchanged up to the minimum of object®"s old and new sizes. IT the new size of
// object is larger, the additional space is uninitialized. ADF_REALLOC() returns a
// pointer to the reallocated space for object, or NULL if the request cannot be

// satisfied, in which case object is unchanged. Note that the returned pointer may
// be different than the input (object) pointer.

/)
#define ADF_ALLOC(applInst,numBytes) malloc(numBytes)

#define ADF_CALLOC(applnst,numElems,bytesPerElem) calloc(numElems,bytesPerElem)
#define ADF_FREE(applnst,object) free(object)

#define ADF_REALLOC(applnst,object,numBytes) realloc(object,numBytes)

/Y - ———
// FUNDAMENTAL DATA TYPES

/Y - ———
/)

// Fundamental data types for characters, Booleans, integers, and floating point
// numbers

[
typedef char ADF_18;
typedef short ADF_116;
typedef int ADF_132;
typedef unsigned char ADF_U8;
typedef unsigned short ADF _U16;

typedef unsigned int ADF_U32;

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 18

typedef float ADF_F32;

typedef double ADF_F64;

typedef int ADF_Bool ;

Y e it et
// INITIALIZATION AND TERMINATION OF THE SYSTEM

S~ —
[

// Initialize the ADF font rendering system. This call must precede all other

// ADFxxx() invocations. This function returns an opaque pointer to an "instance”
// data structure which records all the global and static state for the rendering
// system. A NULL is returned if the request cannot be satisfied.

// All memory allocation tasks required by this system are performed via a set of

// memory allocation macros; each macro requires applnst as an input argument (for
// a discussion of applnst, see the Memory Allocation section above). If the default
// memory allocation macro definitions are used, applnst is ignored.

// Terminate the ADF font rendering system. This function must be invoked when no
// further ADFxxx() invocations are required. The instance pointer returned by the
// corresponding ADFInitSystem() invocation is expected as input.

// Glyphs are represented by the ADFPath data structure. Similar to Postscript, an
// ADFPath is composed of a series of pen commands (e.g., moveto, lineto, and

// curveto) that define a closed shape for an outline-based glyph or a set of stroke
// skeletons for a stroke-based glyph. Note that a skeleton of a stroke-based glyph
// can be open (e.g., for a "u®) or closed (e.g., for an "0"). The pen commands

// specify the movement and drawing of a virtual pen and allow both line segments

// and quadratic Bezier curve segments to be drawn. The endpoints and the control

// vertices of each segment are specified in floating point font units. This library
// Tollows the TrueType convention for rendering glyphs, where rasterization is

// performed using samples located at pixel centers. For outline-based glyphs, we

// assume a non-zero winding rule for distinguishing between filled and unfilled

// areas of the shape. The ADFPath consists of the following elements:

// pathType: ADF_OUTLINE_PATH, ADF_UNIFORM_STROKE_PATH, or ADF_STYLIZED_ STROKE_PATH.
// This element indicates whether the ADFPath represents an outline-based glyph

// (e.g., from a TrueType font) comprising a set of closed contours

// (ADF_OUTLINE_PATH), a uniform-width stroke-based glyph comprising a stroke width

// and a set of stroke skeletons representing the centerlines of the glyph

// (ADF_UNIFORM_STROKE_PATH), or a stylized stroke-based glyph (referred to as a

// stylized stroke font (SSF) glyph in this library) comprising a set of stroke

// skeletons representing the approximate centerlines of the glyph and a set of

// stroke attributes (see ADFSSFAttrs definition below) that determine how the

// stroke skeletons are rendered (ADF_STYLIZED_STROKE_PATH). Note that uniform-width
// stroke-based glyphs are always rendered with round endcaps and round corners.

// pathWidth: The stroke width of a stroke-based glyph in floating point font units.
// pathWidth is used only when pathType is ADF_UNIFORM_STROKE_PATH or
// ADF_STYLIZED_STROKE_PATH.

// ssTAttrs: A set of stroke attributes (see ADFSSFAttrs definition below) that
// determine how the stroke skeletons of a stylized stroke-based glyph are rendered.
// This element is used only when pathType is ADF_STYLIZED_STROKE_PATH.

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 19

// glyphMinX, glyphMinY, glyphMaxX, glyphMaxY: The exact bounding box of the glyph
// in floating point font units. If the pathType is ADF_UNIFORM_STROKE_ PATH or

// ADF_STYLIZED_STROKE_PATH, these values define the exact bounding box of the pen
// commands that comprise the stroke skeletons (i.e., the bounding box does not
// account for the stroke width (i.e., pathWidth)).

//

// fontUnitsPerEM: The em box size in floating point font units (i.e., font units
// per em).

//

// charCode: The Unicode character code of the glyph. A zero character code
// indicates that the character code is not available.

// numContours: For an outline-based glyph, the number of closed contours of the
// glyph, where each contour is described by a series of pen commands and begins
// with a moveto command. This element is not used when pathType is

// ADF_UNIFORM_STROKE_PATH or ADF_STYLIZED_STROKE_PATH.

// numPenCmds: The total number of pen commands in the ADFPath.

// penCmds: A pointer to a contiguous block of fixed-sized pen commands defining the
// glyph shape. The first command of each contour or stroke skeleton must be a

// moveto command. For an outline-based glyph, the x and y coordinates of the last
// command of each contour must equal the x and y coordinates of the contour®s

// initial moveto command.

// algnZones: algnZones is an encoding of the glyph®"s SAZ alignment zones, which are
// used to build the appropriate transformation needed for grid fitting the ADF
// glyph to the pixel grid or to the sub-pixel grid.

// algnZonesMask: algnZones contains a valid encoding of the glyph®s SAZ alignment
// zones if algnZonesMask is non-zero. If algnZonesMask is zero, no SAZ alignment
// zones are available for the glyph.

//

// appData: A pointer to application specific data.
[
Y e it et
#define ADF_OUTLINE_PATH 0 // An outline-based glyph

#define ADF_UNIFORM_STROKE_PATH 1 // A uniform-width stroke-based glyph

#define ADF_STYLIZED_STROKE_PATH 2 // A stylized stroke-based glyph

Y e it et
[
// A summary of the pen commands follows:

//

// ADF_PEN_MOVETO _CMD x y -- Starts a new subpath (i.e., contour or stroke skeleton)
// of the ADFPath. This command sets the current point to (X,y)-

// ADF_PEN_LINETO_CMD x y -- Appends a straight line segment to the current subpath
// (i.e., contour or stroke skeleton) of the ADFPath. The line segment extends from
// the current point to (Xx,y). After constructing the line segment, (x,y) becomes
// the new current point.

// ADF_PEN_CURVTO _CMD cx cy X y -- Appends a quadratic Bezier curve segment to the
// current subpath (i.e., contour or stroke skeleton) of the ADFPath between the
// current point and (X,y) using (cx,cy) as the Bezier control point. After

// constructing the curve segment, (X,y) becomes the new current point.

#define ADF_PEN_MOVETO_CMD O // Set the current point of the subpath
#define ADF_PEN_LINETO_CMD 1 // Append a line segment to the subpath
#define ADF_PEN_CURVTO_CMD 2 // Append a quadratic Bezier segment to the subpath

[
Y e it et T e L
typedef struct {

ADF_U32 opCode; // ADF_PEN_MOVETO_CMD, ADF_PEN_LINETO_CMD, etc.

ADF_F32 X; // The x coordinate of the pen command

ADF_F32 Y; // The y coordinate of the pen command

ADF_F32 CX; // The x coordinate of the control point of curvto commands

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

ADF_F32 cy; // The y coordinate of the control point of curvto commands
} ADFPenCmd;
/Y - ———
/)
// SSF definitions
/)
/Y - ———

#define ADF_SSF_ENDCAP_NONE 0 // Do not render an endcap
#define ADF_SSF_ENDCAP_ROUND 1 // A round endcap

#define ADF_SSF_ENDCAP_SQUARE 2 // A square endcap

#define ADF_SSF_ENDCAP_OBLONG 3 // An oblong endcap
#define ADF_SSF_ENDCAP_TRIANGLE 4 // A triangle endcap

[
Y e it et
#define ADF_SSF_CORNER_NONE 0 // Do not render a corner join

#define ADF_SSF_CORNER_ROUND 1 // A round corner join

#define ADF_SSF_CORNER_BEVEL 2 // A beveled corner join

#define ADF_SSF_CORNER_MITER 3 // A mitered corner join
[
S~
#define ADF_SSF_PROFILE_UNIFORM 0 // A uniform-width profile

#define ADF_SSF_PROFILE_LINEAR 1 // A linearly tapered profile

#define ADF_SSF_PROFILE_QUADRATIC 2 // A quadratic profile

#define ADF_SSF_PROFILE_CUBIC 3 // A cubic profile

#define ADF_SSF_PROFILE_CUSTOM 4 // A custom profile

Y e it et
[
#define ADF_SSF_MAX_PROFILE_COEFS 4 // Maximum # of coefs. to define a profile
[
Y e it et

// SSF profile data structures and callback functions: When rendering a stylized

// stroke-based glyph, applications can specify custom profile callback functions
// (see the ADFSSFDistFromProfileCB() function prototype below) for determining the
// perpendicular distance from each stroke skeleton to the left and right edges of
// its stroke body. Upon entry to a profile callback function, t is the normalized
// length along the current stroke skeleton being processed; t ranges from [0,1].
// The output of each profile evaluation (i.e., the return value of the profile

// callback function) must reside in the range [0,1], where a value of V results in
// a stroke radius of V * 1/2 * pathWidth. attrs (a pointer to a ADFSSFCBAttrs data
// structure) can be used by applications to achieve various effects. For example,
// the unit normal vector N at t can be computed (via interpolation) from the input
// unit normal vector (nx0,ny0) at tO and the input unit normal vector (nxl,nyl) at
// t1; N can then be used to determine the profile distance for simulating the nib
// of a calligraphic pen. Note that t always resides in the interval [tO,tl].

// invRange is set to the value of the expression (tO == t1 2 0 : 1 /7 (t1 - t0)) and
// can be used to interpolate t within the interval [tO,tl1]. If endCap is 1, then
// the profile callback function is being invoked to determine the perpendicular

// distance for constructing the chosen begEndCap (e.g., to determine the radius of
// a round endcap); in this case, t will be 0 and both (nx0,ny0) and (nx1,nyl) will
// be set to the unit normal vector of the stroke skeleton at t = 0. If endCap is 2,
// then the profile callback function is being invoked to determine the

// perpendicular distance for constructing the chosen endEndCap; in this case, t

// will be 1 and both (nx0,ny0) and (nx1,nyl) will be set to the unit normal vector
// of the stroke skeleton at t = 1. If endCap is 0, then the profile callback

// function is not being invoked for endcap processing. If corner is 1, then the

// profile callback function is being invoked to determine the perpendicular

// distance for constructing the chosen corner; in this case, t will reside in the
// range [0,1], both tO and t1 will be set to t, and either the left or the right
// profile callback function will be invoked twice to determine the perpendicular
// distance for the incoming stroke skeleton at the corner point (where both

// (nx0,ny0) and (nx1,nyl) will be set to the unit normal vector of the incoming

// stroke skeleton at t) and for the outgoing stroke skeleton at the corner point
// (where both (nx0,ny0) and (nx1l,nyl) will be set to the unit normal vector of the
// outgoing stroke skeleton at t). If the outside of the corner is on the left side
// of the stroke skeleton then the left profile callback function is used to

// determine the corner data; similarly, if the outside of the corner is on the

// right side of the stroke skeleton then the right profile callback function is

20

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem.h

// used to determine the corner data. IT corner is 0, then the profile callback

// function is not being invoked for corner processing. coefs is set to the left

// profile coefficients ssfTAttrs. leftProfileCoefs (see ADFSSFAttrs definition below)
// when invoking a left profile callback function and to the right profile

// coefficients ssTAttrs.rightProfileCoefs when invoking a right profile callback
// function. appData is a pointer to application specific data which can be used by
// applications to pass arbitrary data to a profile callback function; appData is
// set to ssfAttrs.appData upon entry.

// START: FLOATING POINT MATH ONLY

#if (ADF_MATH_MODE == ADF_MATH_FLOAT)
typedef struct {

ADF_F32 nx0; // x-coordinate of the unit normal vector at tO

ADF_F32 nyO; // y-coordinate of the unit normal vector at tO

ADF_F32 tO0; // Normalized length along the stroke skeleton at (nx0,ny0)

ADF_F32 nx1; // x-coordinate of the unit normal vector at tl

ADF_F32 ny1l; // y-coordinate of the unit normal vector at tl

ADF_F32 t1; // Normalized length along the stroke skeleton at (nx1,nyl)

ADF_F32 invRange; // Set to the value of (t0 == t1 ? 0 : 1 /7 (t1 - t0))

ADF_U32 endCap; // 0: not an endcap, 1: beginning endcap, 2: ending endcap

ADF_U32 corner; // 0: not a corner, 1: processing a corner
} ADFSSFCBAttrs;
/1y
/) -

typedef ADF_F32 (*ADFSSFDistFromProfileCB) (ADF_F32 t, ADFSSFCBAttrs *attrs,
ADF_F32 coefs[ADF_SSF_MAX_PROFILE_COEFS], void *appData);

// END: FLOATING POINT MATH ONLY
// START: FIXED POINT MATH ONLY

/) -
#else
/) -
/1y
typedef ADF_I132 ADF_11616;
/1y
/) -
typedef struct {
ADF_11616 nx0; // x-coordinate of the unit normal vector at tO
ADF_11616 nyO; // y-coordinate of the unit normal vector at tO
ADF_11616 tO; // Normalized length along the stroke skeleton at (nx0,ny0)
ADF_11616 nx1; // x-coordinate of the unit normal vector at tl1
ADF_11616 ny1l; // y-coordinate of the unit normal vector at tl
ADF_11616 t1; // Normalized length along the stroke skeleton at (nx1,nyl)
ADF_11616 invRange; // Set to the value of (tO0O == t1 ? 0 : 1 / (tl - t0))
ADF_U32 endCap; // 0: not an endcap, 1: beginning endcap, 2: ending endcap
ADF_U32 corner; // 0: not a corner, 1l: processing a corner
} ADFSSFCBAttrs;
/) -
/1y--—————

typedef ADF_11616 (*ADFSSFDistFromProfileCB) (ADF_11616 t, ADFSSFCBAttrs *attrs,
ADF_11616 coefs[ADF_SSF_MAX_PROFILE_COEFS], void *appData);

// SSF attributes:

// begEndCap: ADF_SSF_ENDCAP_NONE, ADF_SSF_ENDCAP_ROUND, ADF_SSF_ENDCAP_SQUARE,

// ADF_SSF_ENDCAP_OBLONG, or ADF_SSF_ENDCAP_TRIANGLE. Indicates the type of endcap
// to apply to the beginning of each stroke skeleton of a stylized stroke-based

/7 glyph.

// endEndCap: ADF_SSF_ENDCAP_NONE, ADF_SSF_ENDCAP_ROUND, ADF_SSF_ENDCAP_SQUARE,

21

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 22

ADF_SSF_ENDCAP_OBLONG, or ADF_SSF_ENDCAP_TRIANGLE. Indicates the type of endcap
to apply to the end of each stroke skeleton of a stylized stroke-based glyph.

corner: ADF_SSF_CORNER_NONE, ADF_SSF_CORNER_ROUND, ADF_SSF_CORNER_BEVEL, or
ADF_SSF_CORNER_MITER. Indicates the type of corner join to apply to every corner
of each stroke skeleton of a stylized stroke-based glyph. Corners are determined
procedurally and are placed at every path point of each stroke skeleton that
exhibits a significant Cl discontinuity (e.g., when the angle between two
consecutive line segments L1 and L2 of a stroke skeleton is less than some
threshold a corner join is applied to the point connecting L1 and L2).

asoEnabled: 1f this Boolean flag is set to true, then the pen commands of a
stylized stroke-based glyph are reordered (during ADF generation) to adhere to
traditional Chinese handwriting conventions (e.g., a stroke skeleton consisting
of a single horizontal line segment directed from left-to-right is correctly
ordered according to traditional conventions; in contrast, a stroke skeleton
consisting of a single horizontal line segment directed from right-to-left is
incorrectly ordered and therefore would be reversed during ADF generation).

leftProfile: ADF_SSF_PROFILE_UNIFORM, ADF_SSF_PROFILE_LINEAR,
ADF_SSF_PROFILE_QUADRATIC, ADF_SSF_PROFILE_CUBIC, or ADF_SSF_PROFILE_CUSTOM.
Indicates the type of profile to use to determine the left edge of each stroke
skeleton of a stylized stroke-based glyph. The left profile defines the
perpendicular distance from each stroke skeleton to the left edge of its stroke
body. The general parametric equation defining the left profile is L(t) = LO +
(t*L)) + (t*t*L2) + (t*t™*t™*L3), where t is the normalized length
along the current stroke skeleton being processed (i.e., t ranges from [0,1]) and
LO, L1, L2, and L3 correspond to leftProfileCoefs[0], leftProfileCoefs[1],
leftProfileCoefs[2], and leftProfileCoefs[3], respectively. If leftProfile is
ADF_SSF_PROFILE_UNIFORM, then only LO is used. If leftProfile is
ADF_SSF_PROFILE_CUSTOM, then the callback function leftProfileCB() is used to
determine the perpendicular distance. The output of each leftProfile evaluation
must reside in the range [0,1], where a value of V results in a left stroke
radius of V * 1/2 * pathWidth.

rightProfile: ADF_SSF_PROFILE_UNIFORM, ADF_SSF_PROFILE_LINEAR,
ADF_SSF_PROFILE_QUADRATIC, ADF_SSF_PROFILE_CUBIC, or ADF_SSF_PROFILE_CUSTOM.
Indicates the type of profile to use to determine the right edge of each stroke
skeleton of a stylized stroke-based glyph. The right profile defines the
perpendicular distance from each stroke skeleton to the right edge of its stroke
body. The general parametric equation defining the right profile is R(t) = RO +
(t *R1) + (t*t *R2) + (t *t*t™* R3), where t is the normalized length
along the current stroke skeleton being processed (i.e., t ranges from [0,1]) and
RO, R1, R2, and R3 correspond to rightProfileCoefs[0], rightProfileCoefs[1],
rightProfileCoefs[2], and rightProfileCoefs[3], respectively. If rightProfile is
ADF_SSF_PROFILE_UNIFORM, then only RO is used. IFf rightProfile is
ADF_SSF_PROFILE_CUSTOM, then the callback function rightProfileCB() is used to
determine the perpendicular distance. The output of each rightProfile evaluation
must reside in the range [0,1], where a value of V results in a right stroke
radius of V * 1/2 * pathWidth.

leftProfileCoefs: The left profile coefficients LO, L1, L2, and L3 defined above
(see leftProfile).

rightProfileCoefs: The right profile coefficients RO, R1, R2, and R3 defined
above (see rightProfile).

leftProfileCB: A custom left profile callback function which can be used by
applications to define their own pen styles (see the SSF profile data structures
and callback functions section above).

rightProfileCB: A custom right profile callback function which can be used by
applications to define their own pen styles (see the SSF profile data structures
and callback functions section above).

appData: A pointer to application specific data. appData is an input argument to
the custom profile callback functions leftProfileCB and rightProfileCB.

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 23

// Note: Due to the inexact nature of the representation of numbers during the

// rasterization of SSF glyphs, the normalized length t along a stroke skeleton will
// range from O-epsilon to l+epsilon, where epsilon is a very small fractional value
// (e.g., 0.0001).

[

S~ —

typedef struct {
ADF_U32 begEndCap; // ADF_SSF_ENDCAP_NONE, ADF_SSF_ENDCAP_ROUND, etc.
ADF_U32 endEndCap; // ADF_SSF_ENDCAP_NONE, ADF_SSF_ENDCAP_ROUND, etc.
ADF_U32 corner; // ADF_SSF_CORNER_NONE, ADF_SSF_CORNER_ROUND, etc.
ADF_U32 asoEnabled; // Asian Stroke Orientation is 1: enabled, O: disabled
ADF_U32 leftProfile; // ADF_SSF_PROFILE_UNIFORM, ADF_SSF_PROFILE_LINEAR, etc.
ADF_U32 rightProfile; // ADF_SSF_PROFILE_UNIFORM, ADF_SSF_PROFILE_LINEAR, etc.
ADF_F32 leftProfileCoefs[ADF_SSF_MAX_PROFILE_COEFS]; // Left profile coefs
ADF_F32 rightProfileCoefs[ADF_SSF_MAX_PROFILE_COEFS]; // Right profile coefs
ADFSSFDistFromProfileCB leftProfileCB; // Custom left profile callback function
ADFSSFDistFromProfileCB rightProfileCB; // Custom right profile callback function
void *appData; // Pointer to application specific data

} ADFSSFAttrs;

Y e it et

[

// ADFPath attributes

[

Y e it et

typedef struct {
ADF_U32 pathType; // ADF_OUTLINE_PATH, ADF_UNIFORM_STROKE_PATH, etc.
ADF_F32 pathWidth; // The stroke width of a stroke-based glyph
ADFSSFAttrs ssfAttrs; // SSF attributes
ADF_F32 glyphMinX; // The minimum x-coordinate of the glyph®s bBox
ADF_F32 glyphMinY; // The minimum y-coordinate of the glyph"s bBox
ADF_F32 glyphMaxX; // The maximum x-coordinate of the glyph®s bBox
ADF_F32 glyphMaxy; // The maximum y-coordinate of the glyph"s bBox
ADF_F32 fontUnitsPerEM; // Em box size in floating point font units
ADF_U32 charCode; // Unicode character code of the glyph
ADF_U32 numContours; // # of glyph contours of an outline-based glyph
ADF_U32 numPenCmds; // Total number of pen commands in the ADFPath
ADFPenCmd *penCmds; // Pointer to the pen commands defining the glyph
ADF_U32 algnzZones[2]; // An encoding of the glyph®"s SAZ alignment zones
ADF_U32 algnZonesMask; // 1T non-zero, then algnZones is valid
void *appData; // Pointer to application specific data

} ADFPath;

Y e it et T e L

[

// ADF GENERATION FROM ADFPATHS

[

Y e it et

// Attributes for generating an ADF from an ADFPath. These attributes are ignored
// when generating implicit ADFs, but are required when generating explicit ADFs.

// Explicit ADFs are represented as a spatial hierarchy of explicit ADF cells, where
// each explicit ADF cell contains a set of sampled distance values and a

// reconstruction method which is used to reconstruct the distance field within the
// explicit ADF cell. Explicit ADFs are generated using top-down spatial

// subdivision; maxLevel limits the depth of the spatial hierarchy. During explicit
// ADF generation, each explicit ADF cell is subdivided until maxLevel is reached or
// until the error between the reconstructed distance field and the true distance

// Tield of the ADFPath is less than maxError within the explicit ADF cell. In

// applications that only require an accurate representation of the edge of the

// ADFPath, such as in glyph rendering, it is not necessary for explicit ADF cells
// that do not contain the edge to meet the maxError constraint. In this case,

// distEps should be set to 0. However, some applications (e.g., applications that
// perform collision detection between glyphs) require an accurate representation of
// the distance fTield away from the edge. A positive distEps will force explicit ADF

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 24

// cells within distEps of the edge to meet the maxError constraint. distEps is
// expressed in ADF units.

// After explicit or implicit ADF generation, all relevant ADFPath data required for
// rendering (e.g., the SAZ alignment zones) is represented internally in the ADF
// data structure, thereby allowing the application to destroy the ADFPath.

typedef struct { // Attributes required for generating explicit ADFs
ADF_U32 maxLevel; // Never exceed this level when generating
ADF_F32 maxError; // Maximum error between ADF and ADFPath®"s distance field
ADF_F32 distEps; // Use to force non-edge cells to pass maximum error test
} ADFGenAttrs;

// Generate an ADF from the specified ADFPath using the specified generation
// attributes. This function returns an opaque pointer to the generated ADF; a
// NULL is returned if the request cannot be satisfied.

// The representation of an ADF is opaque (i.e., a void * pointer) and not

// accessible to the application. Applications can, however, query the ADF for its
// size, thus enabling the ADF to be copied, cached, transmitted, etc., for various
// application specific uses. ADFs are represented as a contiguous block of memory
// beginning at the opaque pointer. All internal ADF references (e.g., to ADF cells)
// are stored as offsets, rather than direct pointers, thereby allowing applications
// to freely move ADFs throughout their system.

// Alignment zones identify strong vertical and horizontal edges of glyphs and

// characteristic distances (i.e., zones) of a typeface (e.g., baseline to x-height
// and baseline to cap-height distances). Alignment zones are determined directly
// from the ADF of each glyph and are used to build the appropriate transformation
// needed for grid fitting each ADF to the pixel grid or to the sub-pixel grid.

//

// This library supports two alignment zone systems: Standard Alignment Zones (SAZ)
// and Multiple Alignment Zones (MAZ). There are three important differences between
// these two alignment zone systems:

//

// 1) SAZ alignment zones are designed and optimized for non-CJK glyphs (e.g-,
// Latin or Hebrew glyphs), whereas MAZ alignment zones are designed and

// optimized for CJK glyphs.

//

// 2) SAZ alignment zones are determined in a three step preprocess (described
// immediately below), whereas MAZ alignment zones are determined dynamically
// during rendering.

//

// 3) SAZ alignment zones can be used to align glyphs either to the pixel grid
// or to the sub-pixel grid, whereas MAZ alignment zones can only be used to
// align glyphs to the pixel grid (i.e., alignment to the sub-pixel grid is
// not supported by MAZ alignment zones).

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

// SAZ alignment zones are determined in a three step preprocess:

//

// 1) Initialize SAZ alignment zone detection for a specified typeface

// 2) Detect SAZ alignment zones for each required glyph in the specified

// typeface

// 3) Terminate SAZ alignment zone detection for the specified typeface

//

// Because initialization involves some overhead, it is recommended that the SAZ

// alignment zones for all of the required glyphs of a particular typeface be

// determined before termination.

//

// Note that initialization requires the ADFPaths of a small set of glyphs in the
// typeface from which characteristic distances (i.e., zones) are determined. Hence,
// the application must supply a callback function for fetching the ADFPath of an
// arbitrary glyph from the typeface; when the ADFPath has been processed and is no
// longer needed, a corresponding callback function for “releasing®" the ADFPath is
// invoked. The release callback function can be used to free the ADFPath if the

// corresponding fetch callback function allocated the ADFPath on demand.

//

// After a glyph®s SAZ alignment zones are determined, they are encoded in the

// corresponding ADFPath. During ADF generation, the SAZ alignment zones of the

// ADFPath are copied into the ADF data structure and used for grid fitting during
// rendering.

//

// The current implementation supports SAZ alignment zone detection for the

// following Unicode character code sets:

//

// - Basic Latin

// - Latin 1

// - Latin Extended A

// - Latin Extended B

// - Devanagari

// - Arabic

// - Arabic Supplement

// - Arabic Presentation Forms A

// - Arabic Presentation Forms B

// - Hebrew

// - Hebrew Presentation Forms

// - Thai

//

// The current implementation supports MAZ alignment zone detection for all Unicode
// character code sets. However, MAZ alignment zones are designed and optimized for
// CJK glyphs. Applications are strongly discouraged from using MAZ alignment zones
// to grid fit non-CJK glyphs.
[
S~ —
// A callback function provided by the application and invoked by

// ADFInitAlgnZoneDetection() to fetch the ADFPath of a specified glyph of the

// typeface being processed. A NULL is returned if the ADFPath is not available.

// applnst is the application instance data provided by the application when

// ADFInitSystem() was invoked (it can be used for memory allocation). fontlID is an
// opaque pointer provided by the application to ADFInitAlgnZoneDetection() that
// identifies the typeface. charCode is the Unicode value for the glyph whose

// ADFPath 1is required.
[

application and invoked by

[

// A callback function provided by the

// ADFInitAlgnZoneDetection() to release the ADFPath of a specified glyph of the
// typeface being processed. applnst is the application instance data provided by
// the application when ADFInitSystem() was invoked. fontlD is an opaque pointer
// provided by the application to ADFInitAlgnZoneDetection() that identifies the
// typeface. charCode is the Unicode value for the glyph represented by path. path
// is the ADFPath to be released.

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 26

typedef void ADFReleaseGlyphCB (void *applnst, void *fontID, ADF_U32 charCode,
ADFPath *path);

// Initialize SAZ alignment zone detection for the specified typeface fontlD.

// fTontName is a null-terminated string identifying the name of the typeface; an

// empty string is specified if no name is available. As described above, getGlyphCB
// and releaseGlyphCB are application callback functions for fetching and releasing
// the ADFPath of a specified glyph of the typeface fontID. A NULL releaseGlyphCB is
// valid, thus allowing the application to avoid specifying a release function when
// it is not necessary.

// This function returns an opaque pointer to SAZ "alignment zone state" that is

// used internally for detecting the SAZ alignment zones of individual glyphs via
// ADFDetectAlgnZones(). This state is destroyed by ADFTermAlgnZoneDetection() after
// the SAZ alignment zones for all of the required glyphs of the fontlD typeface are
// determined. A NULL opaque pointer is returned if the request cannot be satisfied.

void *ADFInitAlgnZoneDetection (void *liblnst, void *fontID, ADF_I8 *fontName,
ADFGetGlyphCB *getGlyphCB, ADFReleaseGlyphCB *releaseGlyphCB);

// Detect the SAZ alignment zones of a glyph described by the ADFPath path. Upon a
// successful return, path->algnZonesMask will be set to a non-zero value and

// path->algnZones will contain the SAZ alignment zones for the glyph; if the

// detection fails, path->algnZonesMask is set to zero. algnZoneState is the SAZ
// alignment zone state returned by ADFInitAlgnZoneDetection(). This function

// requires that the Unicode character code in the path (path->charCode) be valid.

// Terminate SAZ alignment zone detection for the typeface corresponding to the
// algnZoneState returned by ADFInitAlgnZoneDetection().-

// DENSITY IMAGES

// Density images are used in this library to record a rendered ADF. When

// performing CRT rendering, density images must have one channel (i.e., type is
// ADF_IMAGE_TYPE_GRAY); for LCD rendering, density images must have four channels
// (i.e., type is ADF_IMAGE_TYPE_RGBA).

// Application-specific data can be stored along with a density image, thus

// providing a convenient and efficient mechanism for associating arbitrary data
// with density images. The application-specific data is comprised of a

// variable-length array of ADF_U32s; the length of this array is specified when

// creating a density image. One possible use of this array is to store data

// required for typesetting and displaying a glyph whose density image is stored in
// a density image cache.

Y e it et T e L
[
#define ADF_IMAGE_TYPE_GRAY 0 // 1 channel density image
#define ADF_IMAGE_TYPE_RGBA 1 // 4 channel density image
Y e it et T e L
[
typedef struct {

ADF_U16 type; // ADF_IMAGE_TYPE_GRAY or ADF_IMAGE_TYPE_RGBA

ADF_U16 w; // Width in pixels

ADF_U16 h; // Height in pixels

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

ADF_U16 appDatalLen; // Length of appData[] array
ADF_U32 *appData; // Application-specific data

ADF_U8 *base; // Ptr to pixels (GG... or RGBARGBA); 8 bits per channel
} ADFImage;
[
Y e it et

// This library uses the following macro to pack density values R, G, B, and A into
// a 32 bit word. Applications can #ifdef this macro to accommodate their specific
// requirements (e.g., the byte order (ADF_CPU_BYTE_ORDER) of particular CPUs and
// the preferred packing order of the RGBA values in a 32 bit word).

// Create a density image of the specified type and size. A variable-length array of
// ADF_U32s can be allocated along with the density image to store

// application-specific data associated with the density image; appDatalLen specifies
// the length of this array. A NULL is returned if the request cannot be satisfied.

ADFImage *ADFCreatelmage (void *liblnst, ADF_U16 type, ADF_U16 w, ADF_U16 h,
ADF_U16 appDatalen);

[
// RENDERING
[
Y e it et
// ADF rendering proceeds in four steps:

//

// 1) Application rendering attributes, such as point size and display mode, are

// set by the application for a particular ADF glyph. These attributes are

// defined in the ADFRenderAttrs data structure.

//

// 2) The application rendering attributes are then processed by ADFRenderSetup()
// to determine:

//

// a) ADFRenderGlyphData, a structure containing data, such as the rendering
// transformation, required by ADFRenderGlyph() to render the ADF glyph

// according to the application rendering attributes.

//

// b) ADFRenderlImageAttrs, a structure containing attributes, such as the image
// size and image origin, required by the application to prepare a density
// image for rendering the ADF glyph. The image size can be used by the

// application to allocate a density image via ADFCreatelmage(); the image
// origin specifies the location of the bottom-left corner of the density
// image in integer pixel coordinates. This location can be used by the

// application to position the density image in the display buffer when

// compositing.

//

// c) ADFTypesetAttrs, a structure containing attributes required by the

// application for adjusting the font metrics due to grid fitting.

//

// d) ADFCacheGlyphData, a structure containing data required by the application
// for positioning and typesetting a cached density image of the ADF glyph
// via ADFPositionCachedlmage(). Refer to ADFPositionCachedlmage() for an
// overview on typesetting cached density images.

//

// 3) A density image of the required size is prepared by the application (e.g.,
// allocated via ADFCreatelmage()).

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 28

4) ADFRenderGlyph() is invoked by the application to render the ADF glyph into
the prepared density image using the corresponding ADFRenderGlyphData. ITf
requested, ADFRenderGlyph() performs MAZ alignment zone detection and grid
fitting on the ADF glyph during the rendering process.

ADFRenderAttrs (set by the application):

penX, penY: The x and y coordinates of the pen position, which determines the
placement of the ADF glyph origin. penX and penY are specified in floating
point pixel coordinates.

pointSize: The requested point size for the ADF glyph.
dpi: The dots-per-inch of the display device.

scaleX, scaleY: Additional x and y scale factors for scaling the ADF glyph

beyond the requested point size. ITf the ADF glyph is an explicit ADF, non-uniform
scaling (i.e., where scaleX does not equal scaleY) distorts the distance field of
the ADF glyph, which can result in poor quality antialiasing. ITf the ADF glyph is
an implicit ADF, non-uniform scaling has no negative impact on the quality of the
antialiasing.

rotationPtX, rotationPtY: The x and y coordinates of the center of rotation
for the ADF glyph. rotationPtX and rotationPtY are specified in floating point
pixel coordinates.

rotationAngle: The rotation angle applied to the ADF glyph. rotationAngle is
specified in radians. Note that grid fitting is automatically disabled when a
non-zero rotationAngle is specified.

displayMode: ADF_REND_MODE_CRT, ADF_REND_MODE_RGBv, ADF_REND_MODE_BGRv,
ADF_REND_MODE_RGBh, or ADF_REND_MODE_BGRh. This element determines whether
the ADF glyph is rendered in CRT mode (ADF_REND_MODE_CRT) or LCD mode (all
others). If an LCD mode is chosen, displayMode also specifies the physical
layout of the display®s sub-pixels, i.e., whether the display is horizontally
or vertically striped, and whether the striping is in RGB or BGR order. This
library assumes that the striped sub-pixels have identical dimensions.

gridFitType: ADF_GRID_FIT_NONE, ADF_GRID_FIT_PIXEL, ADF_GRID_FIT_SUB_PIXEL, or
ADF_GRID_FIT_MAZ_PIXEL. ADF_GRID_FIT_NONE disables grid fitting.
ADF_GRID_FIT_PIXEL aligns a glyph to the pixel grid using SAZ alignment zones.
ADF_GRID_FIT_SUB_PIXEL aligns a glyph to 1/3 of a pixel using SAZ alignment zones
(see Usage Note: Typesetting for a discussion on the advantages and disadvantages
of sub-pixel grid fitting). ADF_GRID_FIT_MAZ_PIXEL aligns a glyph to the pixel
grid using MAZ alignment zones.

outsideCutoff, insideCutoff: The Ffilter cutoff values for the mapping function
which maps ADF distances to density values as described above in Usage Note:
Continuous Stroke Modulation. outsideCutoff and insideCutoff are specified in
floating point pixel coordinates.

gamma: The exponent of the gamma curve mapping ADF distances to density values
as described above in Usage Note: Continuous Stroke Modulation.

useColorReduction: The Boolean flag that enables color reduction during LCD
rendering. Setting this variable to true enables color reduction. Setting this
variable to false disables color reduction. This variable is ignored during CRT
rendering (i.e., when displayMode is set to ADF_REND_MODE_CRT).

colorReductionAmt: If useColorReduction is set to true, this variable controls
the amount of color reduction applied during LCD rendering. The value must lie in
the range [0, 1]. A value of 0 specifies minimum color reduction. A value of 1
specifies maximum color reduction: pixels will be completely desaturated (i.e.,
no color at all). Note that a value of O will still cause some amount of color
reduction to be performed; it will NOT give the same results as turning off color
reduction entirely (i.e., by setting useColorReduction to false). This variable

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

// is ignored if useColorReduction is set to false. This variable is also ignored if
// displayMode is set to ADF_REND_MODE_CRT.

// Applications can perform their own grid fitting instead of using the automatic
// hinting (based on SAZ or MAZ alignment zones) provided by this library. In order
// to render application-hinted glyphs correctly, applications must perform certain
// steps to ensure that this library makes no adjustments to the points (i.e., the x
// and y coordinates) that define the hinted glyphs.

// The steps required to set up an ADFPath for an application-hinted glyph are:
// 1) The application obtains the points (in font units) that define the glyph.

// 2) The application scales the coordinates of each point to pixel coordinates. For

// example, if the desired ppem is 10.0 and the em box size (in font units) is
// 2048.0, the application scales the coordinates of each point by 10.0 /7 2048.0.
//

// 3) The application applies its own grid fitting to the point data in pixel

// coordinates (e.g., by using TrueType hints). If the glyph is a stroke-based
// glyph, the application also determines the hinted stroke width (typically an
// integral value).

//

// 4) The appllcatlon sets the ADFPath data structure. In particular:

// The application sets fontUnitsPerEM to the ppem value (e.g., 10.0).

// - The application specifies the coordinates of each pen command in floating
// point pixel coordinates (instead of in floating point font units).

// - The application specifies the glyph®s bounding box (i.e., glyphMinX,

// glyphMinY, glyphMaxX, glyphMaxY) in floating point pixel coordinates

// (instead of in floating point font units).

// - If the glyph is a stroke-based glyph, the application sets pathWidth to
// the hinted stroke width in floating point pixel coordinates (instead of in
// floating point font units).

//

// After the application generates an ADF from the ADFPath, ADF rendering of an
// application-hinted glyph proceeds as described above, except that the application
// must set certain fields of the ADFRenderAttrs data structure as follows:

// - The application sets dpi to 72.

// - The application sets both scaleX and scaleY to 1.

// - The application sets gridFitType to ADF_GRID_FIT_NONE.
[
Y e it et

#define ADF_REND_MODE_CRT
#define ADF_REND_MODE_RGBv

0 // CRT rendering

1
#define ADF_REND_MODE_BGRv 2

3

4

// LCD rendering; RGB components are vertical RGB
// LCD rendering; RGB components are vertical BGR
// LCD rendering; RGB components are horizontal RGB
// LCD rendering; RGB components are horizontal BGR

#define ADF_REND_MODE_RGBh
#define ADF_REND_MODE_BGRh

#define ADF_GRID_FIT_NONE 0 // No grid fitting

#define ADF_GRID_FIT_PIXEL 1 // Grid fit to the pixel grid using SAZ
#define ADF_GRID_FIT_SUB_PIXEL 2 // Grid fit to the sub-pixel grid using SAZ
#define ADF_GRID_FIT_MAZ PIXEL 3 // Grid fit to the pixel grid using MAZ

Y e it et
[
typedef struct {

ADF_F32 penX; // x-coordinate of ADF glyph origin

ADF_F32 penyY; // y-coordinate of ADF glyph origin

ADF_F32 pointSize; // Requested point size

ADF_U32 dpi; // Dots-per-inch of the display device

ADF_F32 scaleX; // Additional ADF glyph scaling in x

ADF_F32 scaleY; // Additional ADF glyph scaling in vy

ADF_F32 rotationPtX; // x-coord of center of rotation for ADF glyph

ADF_F32 rotationPtY; // y-coord of center of rotation for ADF glyph

ADF_F32 rotationAngle; // Rotation angle in radians

ADF_U32 displayMode; // ADF_REND_MODE_CRT, ADF_REND_MODE_RGBv, etc.

ADF_U32 gridFitType; // ADF_GRID_FIT_NONE, ADF_GRID_FIT_PIXEL, etc.

29

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 30

ADF_F32 outsideCutoff; // Outside filter cutoff value for CSM
ADF_F32 insideCutoff; // Inside filter cutoff value for CSM
ADF_F32 gamma; // Gamma curve exponent for CSM
ADF_U32 useColorReduction; // Boolean that turns on/off color reduction
ADF_F32 colorReductionAmt; // Controls the amount of color reduction
} ADFRenderAttrs;
[————m -
[———mm e -

// ADFRenderGlyphData (determined from ADFRenderAttrs by ADFRenderSetup() and used
// by ADFRenderGlyph() to render the ADF glyph into a density image):

// xFform[3][3]: The rendering transformation matrix used to render the ADF glyph.
// displayMode: The original displayMode attribute specified in ADFRenderAttrs.

// gridFitType: The original gridFitType attribute specified in ADFRenderAttrs or
// ADF_GRID_FIT_NONE if a non-zero rotation angle was specified in ADFRenderAttrs.

// outsideCutoff, insideCutoff: If using implicit ADFs, the original filter cutoff
// values specified in ADFRenderAttrs. If using explicit ADFs, the filter cutoff
// values specified in ADFRenderAttrs transformed into ADF coordinates.

// gamma: The original gamma attribute specified in ADFRenderAttrs.

// TilterCutoffScale: If using implicit ADFs, filterCutoffScale is not used and

// therefore is set to one. If using explicit ADFs, filterCutoffScale specifies the
// scale factor for scaling the filter cutoff values outsideCutoff and insideCutoff
// from pixel coordinates (as specified in ADFRenderAttrs) to ADF coordinates (as
// required in ADFRenderGlyphData); by manually scaling the filter cutoff values,
// applications can perform CSM without repeated calls to ADFRenderSetup(), thereby
// avoiding repeated computation of ADFRenderGlyphData, ADFRenderlImageAttrs, and

// ADFTypesetAttrs.

// useColorReduction: The original useColorReduction attribute specified in
// ADFRenderAttrs.

// colorReductionAmt: The original colorReductionAmt attribute specified in
// ADFRenderAttrs.

// ppem: The pixels per em used during MAZ grid fitting. This element is ignored if
// gridFitType is not set to ADF_GRID_FIT_MAZ_ PIXEL.

Y e it et
[
typedef struct {
ADF_F32 xForm[3]1[3]:; // Rendering transformation matrix
ADF_U32 displayMode; // ADF_REND_MODE_CRT, ADF_REND_MODE_RGBv, etc.
ADF_U32 gridFitType; // ADF_GRID_FIT_NONE, ADF_GRID_FIT_PIXEL, etc.
ADF_F32 outsideCutoff; // Filter cutoff for CSM in pixel or ADF coords
ADF_F32 insideCutoff; // Filter cutoff for CSM in pixel or ADF coords
ADF_F32 gamma; // Gamma curve exponent for CSM
ADF_F32 filterCutoffScale; // Used to convert cutoff values to ADF coords
ADF_U32 useColorReduction; // Boolean that turns on/off color reduction
ADF_F32 colorReductionAmt; // Controls the amount of color reduction
ADF_F32 ppem; // PPEM used for MAZ grid fitting
} ADFRenderGlyphData;
Y e it et T e L
[

// ADFRenderlImageAttrs (determined from ADFRenderAttrs by ADFRenderSetup() and
// used by the application):

// imageOriginX, imageOriginY: The location of the bottom-left corner of the

// density image in integer pixel coordinates. This location can be used by the
// application to position the density image in the display buffer when

// compositing.

// imageW, imageH: The width and height in pixels of the density image required for
// rendering the ADF glyph via ADFRenderGlyph(). These elements can be used by

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

// the application to allocate a density image via ADFCreatelmage().

//

// imageSubPixelType: This element is valid if gridFitType is set to

// ADF_GRID_FIT_SUB_PIXEL in ADFRenderAttrs, i.e., if the application has chosen to
// align the ADF glyph to the sub-pixel grid using SAZ alignment zones. In this

// case, when imageSubPixelType is ADF_SUB _PIXEL_1 the ADF glyph will be aligned to
// the first sub-pixel (e.g., the R component when displayMode is

// ADF_REND_MODE_RGBv); when imageSubPixelType is ADF_SUB PIXEL_2 the ADF glyph will
// be aligned to the second sub-pixel (e.g., the G component when displayMode is

// ADF_REND_MODE_RGBv); etc. Distinguishing between rendered density images aligned
// to different sub-pixels is necessary when caching the images.

Y e it et
[
#define ADF_SUB PIXEL_1 0 // Sub-pixel grid fitting to the first sub-pixel
#define ADF_SUB_PIXEL_2 1 // Sub-pixel grid fitting to the second sub-pixel
#define ADF_SUB_PIXEL_3 2 // Sub-pixel grid fitting to the third sub-pixel
[

typedef struct {

ADF_132 imageOriginX; // x-coordinate of bottom-left corner of image
ADF_132 imageOriginY; // y-coordinate of bottom-left corner of image
ADF_U16 imageW; // Width of glyph density image in pixels
ADF_U16 imageH; // Height of glyph density image in pixels
ADF_U32 imageSubPixelType; // ADF_SUB_PIXEL_1, ADF_SUB_PIXEL_2, etc.
ADFRenderImageAttrs;

ADFTypesetAttrs (determined from ADFRenderAttrs by ADFRenderSetup() and used
by the application):

FUToPixelScaleX, FUToPixelScaleY: These elements are scale factors from font
units to floating point pixel units for the requested point size, dpi, and
additional scale factors, scaleX and scaleY. These elements are computed as
follows:

pixelsPerEM = pointSize * (dpi /7 72)
FUToPixelScaleX = scaleX * pixelsPerEM / fontUnitsPergEMm
FUToPixelScaleY = scaleY * pixelsPerEM / fontUnitsPerEM

Because scaleX and scaleY have been factored into this computation,
FUToPixelScaleX and FUToPixelScaleY will not necessarily match the corresponding
scale factors that various font standards (e.g., TTF and OpenType) would specify.
Note that FUToPixelScaleX and FUToPixelScaleY do not take into account the
incremental scaling of the ADF glyph due to grid fitting.

adjFUToPixelScaleX, adjFUToPixelScaleY: If a non-zero rotation angle is specified
in the ADFRenderAttrs data structure, then adjFUToPixelScaleX and
adjFUToPixelScaleY are set to FUToPixelScaleX and FUToPixelScaleY, respectively.
Otherwise, these elements are set as follows. If the gridFitType element of the
ADFRenderAttrs data structure is set to either ADF_GRID_FIT_PIXEL or
ADF_GRID_FIT_SUB_PIXEL, these elements are scale factors from font units to
floating point pixel units that have been adjusted for the incremental scaling of
the ADF glyph due to grid fitting. These values can be used to modify the font
metrics for typesetting as described above in Usage Note: Typesetting. If the
gridFitType element of the ADFRenderAttrs data structure is set to either
ADF_GRID_FIT_NONE or ADF_GRID_FIT_MAZ_PIXEL, these elements are set to
FUToPixelScaleX and FUToPixelScaleY, respectively.

gridAlgnAdjX, gridAlgnAdjY: If a non-zero rotation angle is specified in the
ADFRenderAttrs data structure, then gridAlgnAdjX and gridAlgnAdjY are both set to
zero. Otherwise, these elements are set as follows. If the gridFitType element of
the ADFRenderAttrs data structure is set to either ADF_GRID_FIT_PIXEL or
ADF_GRID_FIT_SUB_PIXEL, these elements provide the incremental translation of the
pen position from the requested pen position due to grid fitting. These values
can be used to modify the font metrics for typesetting as described above in
Usage Note: Typesetting. ITf the gridFitType element of the ADFRenderAttrs data
structure is set to either ADF_GRID_FIT_NONE or ADF_GRID_FIT_MAZ PIXEL,

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 32
// gridAlgnAdjX and gridAlgnAdjY are both set to zero.

// Note that all of the attributes in ADFTypesetAttrs are determined in unrotated
// space; if the application is typesetting rotated ADF glyphs, the attributes in
// ADFTypesetAttrs must be adjusted accordingly. For example, assuming a rotated
// horizontal baseline and left-to-right typesetting, the advancement of the pen
// position (penX, penY) for the next glyph can be computed as follows:

// dx = advWidthCurrentGlyph * FUToPixelScaleX;

// penX += dx * cos(rotationAngle);

// penY += dx * sin(rotationAngle);

Y e it et

[

typedef struct {
ADF_F32 FUToPixelScaleX; // Unadjusted x-scale from font units to pixels
ADF_F32 FUToPixelScaleY; // Unadjusted y-scale from font units to pixels
ADF_F32 adjFUToPixelScaleX; // Adjusted x-scale from font units to pixels
ADF_F32 adjFUToPixelScaleY; // Adjusted y-scale from font units to pixels
ADF_F32 gridAlgnAdjX; // Pen adjustment in x due to grid fitting
ADF_F32 gridAlgnAdjY; // Pen adjustment in y due to grid fitting

} ADFTypesetAttrs;

Y e it et

[

// ADFCacheGlyphData is private data determined from ADFRenderAttrs by

// ADFRenderSetup() to enable the application to position and typeset a cached
// density image of the ADF glyph via ADFPositionCachedlmage(). Refer to

// ADFPositionCachedlmage() for an overview on typesetting cached density images.

typedef struct {
ADF_U32 data[ADF_CACHE_GLYPH_DATA_LEN]:
} ADFCacheGlyphData;

// Setup for ADF glyph rendering. Application rendering attributes are processed
// by ADFRenderSetup() to determine:

//

// a) ADFRenderGlyphData, such as the rendering transformation, required by

// ADFRenderGlyph() to render the ADF glyph according to the application

// rendering attributes.

//

// b) ADFRenderlImageAttrs, such as the image size and image origin, required by

// the application to prepare a density image for rendering the ADF glyph.

//

// ¢c) ADFTypesetAttrs, required by the application for adjusting the font metrics
// due to grid fitting.

//

// d) ADFCacheGlyphData, required by the application for positioning and typesetting
// a cached density image of the ADF glyph via ADFPositionCachedImage(). If this
// data is not required (e.g., when density images are not being cached), set the
// pointer to this structure to NULL.
[

void ADFRenderSetup (void *liblnst, void *ADF, ADFRenderAttrs *renderAttrs,
ADFRenderGlyphData *renderGlyphData, ADFRenderlImageAttrs *renderlmageAttrs,
ADFTypesetAttrs *typesetAttrs, ADFCacheGlyphData *cacheGlyphData);

// ADFRenderSetupFromPath() determines the same output attributes as

// ADFRenderSetup() (i.e., ADFRenderGlyphData, ADFRenderlImageAttrs, ADFTypesetAttrs,
// and ADFCacheGlyphData), but it determines these output attributes from an ADFPath
// rather than from an ADF. Only a subset of the elements of the ADFPath is

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 33

// required to perform this operation: pathType, pathWidth, glyphMinX, glyphMinY,
// glyphMaxX, glyphMaxY, fontUnitsPerEM, algnZones[2], and algnZonesMask. The

// determined output attributes are identical to those that would be computed by

// first generating an ADF from the ADFPath via ADFGenerateADF() and then calling
// ADFRenderSetup() as long as the required elements of the ADFPath used in both

// approaches are identical.

// ADFRenderSetupFromPath() can be used by applications in various ways. For

// example, it can be used to determine the attributes for typesetting an ADF glyph
// directly from an ADFPath, thus allowing applications to typeset glyphs without
// generating the ADFs of the glyphs (which can be useful when using explicit ADFs
// where the generation overhead may degrade typesetting performance).

// ADFRenderSetupFromPath() can also be used as an alternative to

// ADFPositionCachedlmage() for positioning and typesetting cached density images
// (see below). Applications may find ADFRenderSetupFromPath() simpler to use than
// ADFPositionCachedlmage() and more convenient depending on their particular data
// structures. In general, however, ADFRenderSetupFromPath() is slower than

// ADFPositionCachedlmage(), particularly when using explicit ADFs which require an
// inverse transformation to be computed during ADFRenderSetupFromPath().

void ADFRenderSetupFromPath (void *liblnst, ADFPath *path, ADFRenderAttrs
*renderAttrs, ADFRenderGlyphData *renderGlyphData, ADFRenderlImageAttrs
*renderImageAttrs, ADFTypesetAttrs *typesetAttrs, ADFCacheGlyphData *cacheGlyphData);

// Render the ADF glyph into the specified density image using the rendering data
// ADFRenderGlyphData determined by ADFRenderSetup()

void ADFRenderGlyph (void *liblnst, void *ADF, ADFRenderGlyphData *renderGlyphData,
ADFImage *image);

// POSITIONING AND TYPESETTING CACHED DENSITY IMAGES:

// Given a new pen position for a cached density image, ADFPositionCachedlImage()

// determines the new image origin, the new image sub-pixel type (if sub-pixel grid
// fFitting was specified when the cached density image was rendered), and the new
// typesetting attributes for the cached density image whose cached glyph data is
// given by cacheGlyphData (which is determined via ADFRenderSetup()). This function
// assumes that the cached density image was grid fit to either the pixel grid or
// the sub-pixel grid; determining the image placement and typesetting attributes
// for cached density images that were not grid fit is application-dependent (it

// typically requires application-specific quantizing of rendering attributes such
// as the pen position) and is not supported by this function.

// Upon entry, renderAttrs must contain the new pen position (penX, penY) for the
// ADF glyph represented by the cached density image. Upon exit:

//

// 1) renderlmageAttrs contains the new image origin for the cached density image
// and the new image sub-pixel type (if sub-pixel grid fitting was specified when
// the cached density image was rendered) based on the new pen position. Note
// that the image width and height in renderlmageAttrs are not set by this

// function (the width and height of the cached density image are invariant to
// pen position changes and therefore are not recomputed).

//

// 2) typesetAttrs contains the new typesetting attributes for the cached density
// image based on the new pen position.

//

//

// WHEN GRID FITTING TO THE PIXEL GRID:

//

// When caching density images and grid fitting to the pixel grid using either SAZ
// or MAZ alignment zones, a typical application can augment the ADF rendering
// process as follows to support the typesetting of cached density images:

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

Vo
AD
AD

1) When rendering the ADF glyph for the first time

a) Invoke ADFRenderSetup() to determine the cacheGlyphData for the ADF glyph
and the given renderAttrs

b) Create a density image with application-specific data for storing the
cacheGlyphData

c) Invoke ADFRenderGlyph() to render the ADF glyph into the density image

d) Store the cacheGlyphData as appData in the density image

e) Insert the density image into the cache

f) Typeset the density image according to the typesetAttrs and
render ImageAttrs determined by ADFRenderSetup()

2) When typesetting a cached density image for a new pen position
a) Determine the new typesetAttrs and renderlmageAttrs via
ADFPositionCachedImage() using the cacheGlyphData stored as
application-specific data in the cached density image
b) Typeset the density image according to the new typesetAttrs and
render ImageAttrs

WHEN GRID FITTING TO THE SUB-PIXEL GRID:

When caching density images and grid fitting to the sub-pixel grid using SAZ
alignment zones, up to three density images must be cached for renderAttrs which
differ only by the pen position, where each image corresponds to the alignment of
the ADF glyph with a different sub-pixel. For a new pen position, the appropriate
density image and the new typesetAttrs and renderlImageAttrs can be determined
from the new pen position and the cacheGlyphData of any of the three density
images.

Determining the placement and typesetting of a cached density image when grid
fitting to the sub-pixel grid is similar to the approach outlined for grid
fitting to the pixel grid but requires a two-step cache-retrieval process:

1) Determine the new image origin, new image sub-pixel type, and new typesetAttrs
via ADFPositionCachedlmage() using the cacheGlyphData of any of the three
cached density images.

2) Retrieve the appropriate density image from the cache (i.e., the density image
which corresponds to the new image sub-pixel type) and typeset the density
image according to the new typesetAttrs and renderlmageAttrs determined in
step 1.

Three plausible approaches for storing and retrieving cacheGlyphData are outlined
here:

1) Store cacheGlyphData as application-specific data for every cached density
image. In this approach, the application can query the cache for any of the
three density images to retrieve the cacheGlyphData required by
ADFPositionCachedlImage() .-

2) Store cacheGlyphData as application-specific data for a "data image® of zero
width and height (using a cache key similar to the key used for the cached
density image) and query the cache for the data image to retrieve the
cacheGlyphData required by ADFPositionCachedImage().

3) Store cacheGlyphData in a glyph- and renderAttrs-dependent array managed
by the application and fetch the cacheGlyphData required by
ADFPositionCachedlImage() accordingly.

id ADFPositionCachedlmage (void *liblnst, ADFRenderAttrs *renderAttrs,
FCacheGlyphData *cacheGlyphData, ADFRenderlImageAttrs *renderlImageAttrs,
FTypesetAttrs *typesetAttrs);

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

Cache Overview:

The Saffron type system provides a least recently used (LRU) caching system for
caching ADFs and density images; cached ADFs and density images are referred to
as "elements” in this API. This dual caching system allows the application to
increase the overall effective rendering performance. For most applications using
explicit ADFs, the use of an ADF cache is prudent because explicit ADF generation
from an ADFPath is the slowest process in the rendering pipeline. When using
implicit ADFs, the use of an ADF cache is less critical because implicit ADF
generation is much faster than implicit ADF rendering. Use of a density image
cache can significantly increase rendering performance when viewing documents
with repeated use of identically rendered glyphs (e.g., when viewing most PDF
documents). Because ADFs can be rendered at any size and orientation, cached ADFs
can be reused in animations that scale and rotate type. In contrast, because each
density image represents a single size and orientation, the effectiveness of a
density image cache can be reduced when animating type.

The dual caching system can be used during rendering as follows:

- Create an ADF cache and a density image cache using ADFCreateCache()
- For each glyph to be rendered
- Build a density image key for the glyph based on its fontlD, charCode,
and rendering parameters (e.g., pointSize)
- Use ADFGetCacheElement() to retrieve the density image from the density
image cache with the built key
- If ADFGetCacheElement() returns a cache miss:
- Build an ADF key for the glyph based on its fontlD and charCode
- Use ADFGetCacheElement() to retrieve the ADF from the ADF cache
with the built key
- If ADFGetCacheElement() returns a cache miss:
- Generate an ADF from the glyph"s ADFPath
- Insert the ADF into the ADF cache via ADFInsertCacheElement()
- Render the ADF to produce a density image
- Insert the density image into the density image cache via
ADFInsertCacheElement()
- Composite the density image into the display buffer
- Destroy both caches before terminating the type rendering system

Note that the ADFs and density images stored in the dual caching system must
have been created with ADFGenerateADF() and ADFCreatelmage(), respectively,
thereby allowing them to be properly destroyed by the system.

Cache creation attributes (an argument of ADFCreateCache()):

maxCacheSizeBytes: The total size (in bytes) of all the elements in the cache
will never exceed this limit. This size does not include the size of the hash
table used by the cache (see hashTableSizeExp).

maxCacheNumEIms: The total number of elements in the cache will never exceed
this limit.

cacheType: A cache can store either ADFs (ADF_CACHE_TYPE_ADF) or density images
(ADF_CACHE_TYPE_IMAGE) .

hashTableSizeExp: The exponent that governs the number of entries in the hash
table used by the cache. The number of entries is 2”hashTableSizeExp and the
size of the table (in bytes) is 2 * sizeof(void *) * 2”hashTableSizeExp. Larger
hash tables result in fewer collisions during hashing but require more memory.

keySize: The cache uses a hashing algorithm that hashes a variable length key
of 32 bit quantities into a 32 bit value. keySize indicates the integral number
of 32 bit quantities comprising the key. The bigger the key size, the slower
the hash; consequently, keySize should be kept to an absolute minimum.

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h

#define ADF_CACHE_TYPE_ADF 0 // A cache of ADFs

#define ADF_CACHE_TYPE_IMAGE 1 // A cache of density images
[
Y e it et

typedef struct {
ADF_U32 maxCacheSizeBytes; // Total size of elements cannot exceed this limit

ADF_U32 maxCacheNumElIms; // Total number of elements cannot exceed this limit
ADF_U32 cacheType; // ADF_CACHE_TYPE_ADF or ADF_CACHE_TYPE_IMAGE
ADF_U32 hashTableSizeExp; // Exponent governing number of entries in hash table
ADF_U32 keySize; // Number of 32 bit quantities comprising the key
} ADFCacheAttrs;
/)
/Y - ———

// Cache state (returned for a specified cache using ADFGetCacheState()):

// maxCacheSizeBytes: The original maxCacheSizeBytes creation attribute specified
// to ADFCreateCache() when the cache was created.

// curCacheSizeBytes: The current size (in bytes) of all the elements in the
// cache. This size does not include the size of the hash table used by the cache
// (see hashTableSizeExp).

// maxCacheNumElms: The original maxCacheNumEIms creation attribute specified to
// ADFCreateCache() when the cache was created.

// curCacheNumElms: The current number of elements in the cache.
// numCacheHits: The total number of cache hits during the lifetime of the cache.

// numCacheMisses: The total number of cache misses during the lifetime of the
// cache.

// cacheType: The original cacheType creation attribute specified to
// ADFCreateCache() when the cache was created.

// hashTableSizeExp: The original hashTableSizeExp creation attribute specified
// to ADFCreateCache() when the cache was created.

// KkeySize: The original keySize creation attribute specified to ADFCreateCache()
// when the cache was created.

typedef struct {
ADF_U32 maxCacheSizeBytes; // Total size of elements cannot exceed this limit
ADF_U32 curCacheSizeBytes; // Current total size of all elements in the cache

ADF_U32 maxCacheNumElms; // Total number of elements cannot exceed this limit
ADF_U32 curCacheNumElms; // Current number of elements in the cache
ADF_U32 numCacheHits; // Total number of cache hits during cache lifetime
ADF_U32 numCacheMisses; // Total number of cache misses during cache lifetime
ADF_U32 cacheType; // ADF_CACHE_TYPE_ADF or ADF_CACHE_TYPE_IMAGE
ADF_U32 hashTableSizeExp; // Exponent governing number of entries in hash table
ADF_U32 keySize; // Number of 32 bit quantities comprising the key
} ADFCacheState;
Y e it et
[

// Create a cache with the specified creation attributes. This function returns
// an opaque pointer to the created cache; a NULL is returned if the request cannot
// be satisfied.

36

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 37

void ADFDestroyCache (void *liblnst, void *cache);

// Search the specified cache for the element with the given key. Upon return:

// iT (result == ADF_CACHE_HIT) the return value is a pointer to the

// cached element (i.e., the ADF or the density image). This element

// is owned and managed by the cache and therefore should be treated

// as read-only memory.

//

// if (result == ADF_CACHE_MISS) the return value is an opaque pointer
// to an insertion node required for inserting the element (if mandated
// by the application) into the cache using ADFInsertCacheElement(). The
// insertion node is returned to avoid rehashing the element key and

// repeating the search for the appropriate insertion point in the cache.
//

// I updatelLRU is true (the typical case), this function updates the least

// recently used list accordingly (i.e., the element with the given key is marked
// as the most recently used element when this function results in a cache hit).
// 1T updatelLRU is false, the LRU list is untouched.

#define ADF_CACHE_MISS O // The requested element was not found in the cache
#define ADF_CACHE_HIT 1 // The requested element was found in the cache

void *ADFGetCacheElement (void *liblnst, void *cache, ADF_U32 *key, ADF_U32
updatelLRU, ADF_U32 *result);

// Insert into the specified cache the element (i.e., the ADF or the density image)
// with the given key at the specified location insertNode. insertNode is an opaque
// pointer to an insertion node returned by ADFGetCacheElement() when a cache miss

// occurs. A return value of zero indicates success; a non-zero return value

// indicates failure. Upon success, the element is owned and managed by the cache,

// and cannot be freed or in any way altered by the application. Upon failure, the

// element is owned by the application.

// A successful insertion updates the LRU list by marking the inserted element as
// the most recently used element.

ADF_U32 ADFlInsertCacheElement (void *liblnst, void *cache, void *insertNode,
ADF_U32 *key, void *element);

// Flush the element (i.e., the ADF or the density image) with the given key from
// the specified cache

// Flush all of the elements (i.e., the ADFs or the density images) from the
// specified cache

void ADFGetCacheState (void *liblnst, void *cache, ADFCacheState *cacheState);

C:\Users\perry\Desktop\SaffronViewerV40\Source\SaffronLib\ADFTypeSystem_h 38

// Return a pointer to a contiguous block of memory containing the keys of all the
// elements (i.e., the ADFs or the density images) of the specified cache. A NULL is
// returned if the request cannot be satisfied. Upon a successful return, cacheState
// will be populated with the cache state, thereby providing the application with

// the number of keys (i.e., cacheState->curCacheNumElms), the key size (i.e.,

// cacheState->keySize), the current size (in bytes) of all the elements in the

// cache (i.e., cacheState->curCacheSizeBytes), and other potentially useful data
// pertaining to the specified cache. The contiguous block of keys (which can be

// treated as a 1D array of 32-bit quantities, with cacheState->keySize 32-bit

// quantities per key), is ordered from the most-recently-used element to the

// least-recently-used element. The contiguous block of memory should be freed by
// the application (via ADF_FREE()) when it is no longer required.

Y e it et
// End of C++ wrapper

S~
#ifdef _ _cplusplus

3

#endif

Y e it et
// End of _ADF_TYPE_SYSTEM_

Y e it et

#endif

