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Distance Fields

• A distance field is a scalar field that
• specifies the distance to the surface of a shape ...
• where the distance may be signed to distinguish 

between the inside and outside of the shape

• Distance 
• can be defined very generally (e.g., non-Euclidean)
• minimum Euclidean distance is used for most of this 

presentation (with the exception of the volumetric molecules)

Distance Fields
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2D Distance Field

R shape Distance field of R

2D Distance Field

3D visualization of distance field of R
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Shape

• By shape we mean more than just the 3D 
geometry of physical objects. Shape can have 
arbitrary dimension and be derived from 
simulated or measured data.

Color gamut

⇒

Color printer

Conceptual Advantages of 
Distance Fields

• Represent more than the surface
• object interior and the space in which the object sits

• Gains in efficiency and quality because 
• distance fields vary “smoothly”
• are defined throughout space

• Gradient of the distance field yields
• surface normal for points on the surface
• direction to closest surface point for points off the 

surface
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Practical Advantages of 
Distance Fields

• Smooth surface reconstruction
• continuous reconstruction of a smooth field

• Trivial inside/outside and proximity testing
• using sign and magnitude of the distance field

• Fast and simple Boolean operations
• intersection: dist(A∩B) = min(dist(A), dist(B))
• union: dist(A∪B) = max(dist(A), dist(B))

• Fast and simple surface offsetting
• offset by d: dist(Aoffset) = dist(A) + d

• Enables geometric queries such as closest point
• using gradient and magnitude of the distance field

Sampled Distance Fields

• Similar to sampled images, insufficient 
sampling of distance fields results in aliasing

• Because fine detail requires dense sampling, 
excessive memory is required with regularly
sampled distance fields when any fine detail is 
present
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Adaptively Sampled Distance Fields

• Detail-directed sampling of a distance field
• High sampling rates only where needed

• Spatial data structure (e.g., an octree)
• Fast localization for efficient processing 

• Reconstruction method (e.g., trilinear 
interpolation) 
• For reconstructing the distance field and gradient 

from sampled distance values

ADF Instantiations

• Spatial data structures
• octrees
• wavelets
• multi-resolution tetrahedral meshes …

• Reconstruction functions
• trilinear interpolation
• B-spline wavelet synthesis
• barycentric interpolation ...
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ADFs - A Comprehensive Representation

ADFs consolidate the data needed to 
represent complex objects

ADFs provide:

• spatial hierarchy

• distance field

• object surface

• object interior

• object exterior

• surface normal 
(gradient at 
surface)

• direction to closest 
surface point 
(gradient off 
surface)

ADFs - A Unifying Representation

• Represent surfaces, volumes, and implicit 
functions

• Represent sharp edges, organic surfaces, thin-
membranes, and semi-transparent substances

• Consolidate multiple structures for complex 
objects (e.g., for collision detection, LOD construction, and dynamic meshing)

• Can store auxiliary data in cells or at cell vertices 
(e.g., color and texture)
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Algorithms for Octree-based ADFs

• Specifics of octree-based ADFs
• Generating ADFs
• Editing ADFs
• Rendering ADFs
• Generating point models from ADFs
• Triangulating ADFs
• Surfacing ADFs
• Hierarchical transmission of ADFs

Octree-based ADFs

• A distance value is stored for each cell corner 
in the octree

• Distances and gradients are estimated from 
the stored values using trilinear reconstruction
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Reconstruction

A single trilinear field can represent highly curved surfaces 

Comparison of 3-color Quadtrees 
and ADFs

87,881 cells (3-color) 1473 cells* (ADF)
*new research: high order interpolants 

significantly reduce cell count
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• Bottom-up generation
• Fully populate
• Recursively coalesce

• Top-down generation
• Initialize root cell
• Recursively subdivide

• Tiled Generation
• Top-down generation within localized tiles
• Reduced memory requirements, better memory 

coherency, reduced computation

Generation

Editing

• Editing is a localized re-generation
• determine minimum overlap region between tool and 

the object ADF
• perform Boolean operation (e.g., subtraction) on the 

distance fields of the tool and the object in the 
overlap region
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Editing – Sculpting Interface

• Surface following
• Distance-based constraints
• Control-point editing

Editing – Sculpting Interface

• Surface following
• Distance-based constraints
• Control-point editing
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Editing – Sculpting Interface

• Surface following
• Distance-based constraints
• Control-point editing

Rendering via Ray Casting
Ray-surface Intersection with a Linear Solver

• Assume that distances vary linearly along the ray 
• Determine the zero-crossing within the cell given distances at the 

points where the ray enters and exits the cell
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Ray Casting
Volume Rendering

• Colors and opacities are accumulated at equally spaced samples along 
each ray

• Use octree and distance field to accelerate volume rendering

Adaptive Asynchronous Ray Casting

• Adaptive rendering
• the image region to be rendered is divided into a hierarchy 

of image tiles
• the subdivision of each tile is guided by a perceptually-

based predicate
• pixels within image tiles of size greater than 1x1 are 

bilinearly interpolated to produce the image
• rays are cast into the ADF at tile corners and intersected 

with the surface using the linear solver

• Processing occurs 
• asynchronously
• upon user request 
• to update edited regions
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Adaptive Asynchronous Ray Casting

Adaptively ray cast ADF Rays cast to render part 
of the left image

Generating Point Models from ADFs

• Points are randomly seeded in 
boundary leaf cells and moved 
to the surface

• Fast
• 1,100,000 points in 0.12s 

(Pentium IV)

• Can be detail-directed
• points can be evenly distributed 

or concentrated near surface 
detail
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Triangulating ADFs

• ADFs can be triangulated using a fast new 
triangulation method

• Triangulation is efficient
• 300,000 triangles in 0.37 seconds, Pentium IV
• 3,000 triangles in < 0.01 seconds

• The triangulation produces models that are 
orientable and closed

Triangulation Algorithm

• Seed
• Assign a vertex to each boundary leaf cell of the ADF, 

initially placing vertices at cell centers

• Join
• Join vertices of neighboring cells to form triangles

• Relax
• Move vertices to the surface using the distance field

• Improve
• Move vertices over the surface towards their average 

neighbors' position to improve triangle quality
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Triangulation − Level-of-Detail

• The octree is traversed and vertices are seeded into 
boundary cells whose maximum error satisfies a user-
specified threshold

• Cells below these cells in the hierarchy are ignored

Surfacing ADFs

• Off-the-shelf solution
• generate a dense point model or a detail-directed 

triangle model
• use Geomagic Studio 4 to create NURBS

• ADF-specific approach
• exploit detail-directed sampling to identify initial 

patches
• refine patches using an optimization approach
• use the distance field to compute surface error and 

guide refinement



17

Hierarchical Transmission of ADFs

• ADF hierarchy allows progressive transmission

• ADF hierarchy allows transmission of sub-
volumes for localized processing

Accuracy and Benchmarks

• Surface accuracy summary
• Timing
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Surface Accuracy Summary

• Planar surfaces
• can be reconstructed to floating point precision from a 

small number of sample points

• Curved surfaces
• limited by the maximum cell error (an ADF generation 

parameter)
• level 7 ADF achieves 30 micron accuracy for a 1 meter 

diameter sphere

• Edges and corners
• limited by maximum ADF level (an ADF generation 

parameter)
• level 13 ADF achieves 10 micron accuracy for a (8 cm)3

part

Timing

• Generation and Editing
• Approximately 300,000 cells per second (Pentium IV)
• 1 meter sphere (at 31 micron accuracy) in 0.265 seconds
• 1 meter box (at 85 micron accuracy) in 0.310 seconds

• Rendering
• Asynchronous, adaptive, on-demand ray casting provides 

interactive rendering

• Point generation
• 9.2 million points per second (Pentium IV)

• Triangle generation
• 800,000 triangles per second (Pentium IV)
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Technology Status

• Research papers
• Patents
• ADF library

Research Papers

• “Adaptively Sampled Distance Fields: A General Representation of Shape for 
Computer Graphics”, SIGGRAPH 2000 Conference Proceedings

• “Kizamu: A System For Sculpting Digital Characters”, SIGGRAPH 2001 
Conference Proceedings

• “Computing 3D Geometry Directly from Range Images”, SIGGRAPH 2001 
Conference Abstracts and Applications

• “A Computationally Efficient Framework for Modeling Soft Body Impact”, 
SIGGRAPH 2001 Conference Abstracts and Applications

• “Dynamic Meshing Using Adaptively Sampled Distance Fields”, SIGGRAPH 2001 
Conference Abstracts and Applications

• “New Directions in Shape Representations”, SIGGRAPH 2001 (full day) Course

• “Using Distance Maps for Accurate Surface Representation in Sampled 
Volumes”, IEEE VolVis Symposium 1998

• “A New Representation for Device Color Gamuts”, MERL TR2001-09

• “A New Framework For Non-Photorealistic Rendering”, MERL TR2001-12

• “A New Interaction Method for Creating and Editing 3D Geometry and Geometric 
Texture”, SIGGRAPH 2002 Submission
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Patents

• A comprehensive patent portfolio
• 2 issued patents

• 3 granted patents (but not yet issued)

• 17 filed patent applications

• 4 new patent disclosures

ADF Library

• A product-worthy C library
• Features include: Stock distance functions for constructing and combining objects; 

Milling specific distance functions for extrusion, surface of revolution, and lathing; Tiled 

generation; Bounded-surface generation; Interactive CSG editing; Bezier tool paths; 

Surface and volume rendering; Procedural shading interface; Adaptive, asynchronous 

ray casting; ADF specific 2D antialiasing; Supersampling for standard 2D and 3D 

antialiasing; Simple camera and lighting model; Region rendering to support interactive 

CSG editing; Conversion of image and range data to ADFs; Idle time processing; 

Reconstruction functions; ADF read and write operations; Interactive generation of 

view-dependent and view-independent point models; Interactive generation of optimal 

triangle meshes; Generation of level-of-detail triangle meshes; Blending of ADFs; Input 

and output of Wavefront Object files; Amenable to parallel implementations; Developed 

with object-oriented ANSI C; Runs under Windows and Linux.
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Demonstration

Business Opportunities

• Digital clay

• Conceptual design

• Real-time simulation, verification, and path 
planning for NC milling
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Digital Clay

• ADFs provide a fresh approach to design with 
• direct sculpting interface

• organic shapes

• razor sharp edges

• highly detailed texture from range images, photographs, 
and procedurally generated data

• Market opportunities include 
• constructing Hollywood models 

• constructing models for game design

• 3D ‘sketching’ for industrial design 

Organic and Textured Sculpting

Organic shape with razor sharp edges
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Hollywood Models

Exquisitely detailed concept models for “The Lord of the Rings” 
(simple Phong illumination – all detail is geometric)

Hollywood Models

Concept model of Middle-earth for “The Lord of the Rings” 
(simple Phong illumination – all detail is geometric)
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Organic and Textured Sculpting

Organic forms

Digital Clay

• Advantages of ADFs for Editing

• Represent both smooth surfaces and sharp corners without 
excessive memory 

• Sculpting is direct, intuitive, and fast

• Does not require control point manipulation or trimming

• The distance field can be used to enhance the user 
interface

• Guide the position and orientation of the sculpting tool 
• Enable distance-based constraints for carving

• ADF-specific methods for capturing geometry from range 
data and photographs
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Conceptual Design

ADF Concept models

Conceptual Design

3D ADFs generated directly from sculpted 2D ADFs

Surface of 
revolution

Extrusion
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Conceptual Design

• Reverse engineering from range data
• fast and memory efficient
• water-tight, hole-free models
• can be trivially sculpted in 3D to repair occluded 

regions
• can produce optimal level-of-detail tessellations

NC Milling

• Real-time simulation
• Fast editing rates
• Accurate shape representation

• Verification, Analysis, and Path Planning
• Distance field enables fast and accurate 

error measurement 
• Trivial collision detection and proximity 

testing between tool and workpiece
• ADFs represent surfaces, object interiors, 

and the material to be removed
• Offset surfaces can be used for rough 

cutting in coarse-to-fine machining
• Volume visualization for part thickness 

testing Red: thickness > 0.02
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The End

Euclidean and Non-Euclidean Fields

• Consider the distance field of the unit sphere S in R3

given by h(x) = 1 – (x2 + y2 + z2)½, in which h is the 
Euclidean signed distance from S

• Or h(x) = 1 – (x2 + y2 + z2), in which h is the 
algebraic signed distance from S

• Or h(x) = (1 – (x2 + y2 + z2))2, in which h is an 
unsigned distance from S

• Etc.
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Shape

• We use it in a broad context for any locus 
defined in a metric space
• Locus: any system of points which satisfies one or 

more conditions
• Metric space: a pair (X, d) where X is a set and d is a 

metric on X such that
• d(x,y) ≥ 0 for all x,y in X
• d(x,y) = 0 iff x = y for all x,y in X
• d(x,y) = d(y,x) for all x,y in X
• d(x,z) ≤ d(x,y) + d(y,z) for all x,y,z in X

Example 2D Quadtree ADF
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Subdivision Predicates

• Point sampling

• Gradient sampling

• Interval methods

Point sampling: 19 test points 
to determine cell error

Euclidean ADFs

• Can efficiently determine if a cell is interior or exterior

(1) all di have same sign
(2) all || di || > 0.5 cell diagonal


