
Mitsubishi Electric Research Laboratory
MERL - Cambridge Research

Technical Report 2001-TR2001-13            March 27, 2001

Dynamic Meshing Using Adaptively Sampled Distance Fields
Jackson Pope

Sarah F. Frisken
Ronald N. Perry

Abstract

Many models used in real-time graphics applications are generated automatically using techniques
such as laser-range scanning. The resultant meshes typically contain one or more orders of
magnitude more polygons than can be displayed by today’s graphics hardware. Numerous methods
have been proposed for automatically creating level-of-detail (LOD) meshes from large input
meshes. These techniques typically generate either one or more static LOD meshes, pre-computed
before use in the application, or a dynamic mesh, where the LOD of the mesh adapts to frame rate
requirements.  We present a new dynamic LOD technique ideal for applications such as games and
physical simulations based upon Adaptively Sampled Distance Fields (ADFs).
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Introduction
Many models used in real-time graphics applications are generated
automatically using techniques such as laser-range scanning. The
resultant meshes typically contain one or more orders of magnitude more
polygons than can be displayed by today’s graphics hardware. Numerous
methods have been proposed for automatically creating level-of-detail
(LOD) meshes from large input meshes [2]. These techniques typically
generate either one or more static LOD meshes, pre-computed before
use in the application, or a dynamic mesh, where the LOD of the mesh
adapts to frame rate requirements.  We present a new dynamic LOD
technique ideal for applications such as games and physical simulations
based upon Adaptively Sampled Distance Fields (ADFs) [1]; ADFs also
provide fast collision detection as required by these applications.

Previous Work
Existing dynamic meshing algorithms such as View Dependent
Progressive Meshes (VDPM) [3] and Hierarchical Dynamic Simplification
(HDS) [4] generate a hierarchy to efficiently process refinement and
decimation operations. The hierarchy in VDPM is formed by creating a
new parent vertex for every pair of vertices combined by an edge
collapse operation. The HDS hierarchy is formed by spatially subdividing
the scene into cells and grouping vertices in each cell into a single
representative vertex. In both, the screen space error and normal cones
(to detect back-facing and silhouette triangles) are used to determine
when to refine and decimate the mesh. We present a new method that
utilizes a spatial subdivision hierarchy similar to [4], enables fast collision
detection, and uses the distance field to position mesh vertices to
optimize mesh shape.

Generating Meshes from ADFs
ADFs are a new shape representation which adaptively sample the
signed distance field of an object and store the distance values in a
spatial hierarchy (we use an octree) [1]. We utilize a fast, new
triangulation method that generates topologically consistent (orientable
and closed) triangle meshes from the ADF structure [5]. Cells in the ADF
octree which contain the object surface (where the distance field changes
sign) are connected to their neighbors by triangles. The technique
exploits the hierarchical nature of the octree to produce detail-directed
triangles.

Algorithm
Our method creates a triangle mesh from the ADF, associating triangles
with ADF cells, and then adapts the mesh in real-time to viewing
parameters in such a way to optimize visual quality (by using a high level
of detail in visually important regions), while meeting user defined frame
rate criteria.

The algorithm is composed of two stages: a pre-processing stage and a
real-time stage. The real-time stage is performed every frame or every
few frames as required. The pre-processing stage initializes the data
required for the real-time stage and creates an initial view-independent
active cell list from which a triangle mesh is derived. Each active cell is
associated with one ADF cell. Data initialization includes determining and
storing normal cones in each boundary ADF cell; these cones bound the
normal cones of all the cell’s children. The hierarchical ADF structure
enables fast view frustum and back-face culling using normal cones.

The real-time stage consists of adapting and optimizing the existing
active cell list and corresponding triangle mesh for the current viewing
conditions. During each adaptation, the active cells are considered to see
if they contribute too many or too few triangles to the mesh according to
view-dependent cell weights. If the number of triangles is appropriate, the

cell is left alone. If the cell contributes too many triangles, triangles
associated with the cell and its siblings are deleted from the mesh, the
cell’s parent is added to the active cell list, and triangles associated with
the cell’s parent are generated and added to the mesh. If the cell
contributes too few triangles, the cell is added to an ordered list of such
cells. To ensure that frame rate requirements are met, this cell list is
processed in order only while there is frame time available. When
processed, triangles associated with cells in the ordered list are deleted
from the mesh, the cell’s boundary child cells are added to the active cell
list, and triangles associated with the cell’s boundary child cells are
generated and added to the mesh. The differential treatment of cells with
too many and too few triangles avoids the mesh growing in size beyond
the rendering capabilities of the graphics hardware.

Each cell is assigned a weight based upon its contribution to the view.
Currently a cell is assigned a high weight if it is on the object's silhouette,
and zero weight if the cell is back-facing or outside the view frustum.
Other parameters could be considered such as the projected screen size
of the cell or whether the cell contains a specular highlight. In addition,
our method uses the in-place cell error of the ADF as an indicator of
surface roughness/curvature in the cell, and modulates the weight by this
error.

Results
The technique produces detail-directed triangle meshes of high visual
quality as viewed from the camera, while minimizing the number of
triangles in non-visible portions of the object. It meets frame rate criteria
(currently at 30 FPS it maintains ~25K triangles), even during viewpoint
changes that lead to large differences in the visible portion of the object.

Summary
A new method allowing the generation of viewpoint-dependent dynamic
triangle meshes using ADFs has been presented. These meshes are of
high visual quality, while maintaining a low triangle count in invisible
areas.
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Figure 1. A) Bunny model from camera point (16984 triangles, 47 FPS), note the
silhouette quality. B) CSG object showing view frustum (20364 triangles, 41 FPS),
note how the areas outside the view frustum are culled.
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Appendix A: System Diagrams for Dynamic Meshing

Figure A1. System diagram for dynamic meshing using ADFs

Figure A2. System diagram for building a detail-directed normal cone hierarchy using ADFs
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Figure A3. System diagram for dynamic modification of active cells during dynamic meshing
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