
Mitsubishi Electric Research Laboratory
MERL - Cambridge Research

Technical Report 2001-TR2001-13 March 27, 2001

Dynamic Meshing Using Adaptively Sampled Distance Fields
Jackson Pope

Sarah F. Frisken
Ronald N. Perry

Abstract

Many models used in real-time graphics applications are generated automatically using techniques
such as laser-range scanning. The resultant meshes typically contain one or more orders of
magnitude more polygons than can be displayed by today’s graphics hardware. Numerous methods
have been proposed for automatically creating level-of-detail (LOD) meshes from large input
meshes. These techniques typically generate either one or more static LOD meshes, pre-computed
before use in the application, or a dynamic mesh, where the LOD of the mesh adapts to frame rate
requirements. We present a new dynamic LOD technique ideal for applications such as games and
physical simulations based upon Adaptively Sampled Distance Fields (ADFs).

Presented at SIGGRAPH 2001 Conference Abstracts and Applications.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories of Cambridge,
Massachusetts; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright
notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric
Research Laboratories. All rights reserved.

Copyright © MERL Mitsubishi Electric Research Laboratories, 2001
201 Broadway, Cambridge, Massachusetts 02139

Dynamic Meshing Using Adaptively Sampled Distance Fields
Jackson Pope, Sarah F. Frisken and Ronald N. Perry, MERL

Introduction
Many models used in real-time graphics applications are generated
automatically using techniques such as laser-range scanning. The
resultant meshes typically contain one or more orders of magnitude more
polygons than can be displayed by today’s graphics hardware. Numerous
methods have been proposed for automatically creating level-of-detail
(LOD) meshes from large input meshes [2]. These techniques typically
generate either one or more static LOD meshes, pre-computed before
use in the application, or a dynamic mesh, where the LOD of the mesh
adapts to frame rate requirements. We present a new dynamic LOD
technique ideal for applications such as games and physical simulations
based upon Adaptively Sampled Distance Fields (ADFs) [1]; ADFs also
provide fast collision detection as required by these applications.

Previous Work
Existing dynamic meshing algorithms such as View Dependent
Progressive Meshes (VDPM) [3] and Hierarchical Dynamic Simplification
(HDS) [4] generate a hierarchy to efficiently process refinement and
decimation operations. The hierarchy in VDPM is formed by creating a
new parent vertex for every pair of vertices combined by an edge
collapse operation. The HDS hierarchy is formed by spatially subdividing
the scene into cells and grouping vertices in each cell into a single
representative vertex. In both, the screen space error and normal cones
(to detect back-facing and silhouette triangles) are used to determine
when to refine and decimate the mesh. We present a new method that
utilizes a spatial subdivision hierarchy similar to [4], enables fast collision
detection, and uses the distance field to position mesh vertices to
optimize mesh shape.

Generating Meshes from ADFs
ADFs are a new shape representation which adaptively sample the
signed distance field of an object and store the distance values in a
spatial hierarchy (we use an octree) [1]. We utilize a fast, new
triangulation method that generates topologically consistent (orientable
and closed) triangle meshes from the ADF structure [5]. Cells in the ADF
octree which contain the object surface (where the distance field changes
sign) are connected to their neighbors by triangles. The technique
exploits the hierarchical nature of the octree to produce detail-directed
triangles.

Algorithm
Our method creates a triangle mesh from the ADF, associating triangles
with ADF cells, and then adapts the mesh in real-time to viewing
parameters in such a way to optimize visual quality (by using a high level
of detail in visually important regions), while meeting user defined frame
rate criteria.

The algorithm is composed of two stages: a pre-processing stage and a
real-time stage. The real-time stage is performed every frame or every
few frames as required. The pre-processing stage initializes the data
required for the real-time stage and creates an initial view-independent
active cell list from which a triangle mesh is derived. Each active cell is
associated with one ADF cell. Data initialization includes determining and
storing normal cones in each boundary ADF cell; these cones bound the
normal cones of all the cell’s children. The hierarchical ADF structure
enables fast view frustum and back-face culling using normal cones.

The real-time stage consists of adapting and optimizing the existing
active cell list and corresponding triangle mesh for the current viewing
conditions. During each adaptation, the active cells are considered to see
if they contribute too many or too few triangles to the mesh according to
view-dependent cell weights. If the number of triangles is appropriate, the

cell is left alone. If the cell contributes too many triangles, triangles
associated with the cell and its siblings are deleted from the mesh, the
cell’s parent is added to the active cell list, and triangles associated with
the cell’s parent are generated and added to the mesh. If the cell
contributes too few triangles, the cell is added to an ordered list of such
cells. To ensure that frame rate requirements are met, this cell list is
processed in order only while there is frame time available. When
processed, triangles associated with cells in the ordered list are deleted
from the mesh, the cell’s boundary child cells are added to the active cell
list, and triangles associated with the cell’s boundary child cells are
generated and added to the mesh. The differential treatment of cells with
too many and too few triangles avoids the mesh growing in size beyond
the rendering capabilities of the graphics hardware.

Each cell is assigned a weight based upon its contribution to the view.
Currently a cell is assigned a high weight if it is on the object's silhouette,
and zero weight if the cell is back-facing or outside the view frustum.
Other parameters could be considered such as the projected screen size
of the cell or whether the cell contains a specular highlight. In addition,
our method uses the in-place cell error of the ADF as an indicator of
surface roughness/curvature in the cell, and modulates the weight by this
error.

Results
The technique produces detail-directed triangle meshes of high visual
quality as viewed from the camera, while minimizing the number of
triangles in non-visible portions of the object. It meets frame rate criteria
(currently at 30 FPS it maintains ~25K triangles), even during viewpoint
changes that lead to large differences in the visible portion of the object.

Summary
A new method allowing the generation of viewpoint-dependent dynamic
triangle meshes using ADFs has been presented. These meshes are of
high visual quality, while maintaining a low triangle count in invisible
areas.

References
[1] Frisken, S. F., Perry, R. N., Rockwood, A. P. and Jones, T. R., Adaptively Sampled
Distance Fields: A General Representation of Shape for Computer Graphics, in Proceedings
of SIGGRAPH 2000, pp. 249-254, 2000.
[2] Garland, M., Multiresolution Modeling: Survey and Future Opportunities, in Eurographics
’99 State of the Art Reports, pp. 111-131, 1999.
[3] Hoppe, H., View-Dependent Refinement of Progressive Meshes, in Proceedings of
SIGGRAPH 1997, pp. 189-198, 1997.
[4] Luebke, D. and Erikson, C., View-Dependent Simplification of Arbitrary Polygonal
Environments, in Proceedings of SIGGRAPH 1997, pp. 199-208, 1997.
[5] Perry, R. N. and Frisken, S. F., Kizamu: A system for sculpting digital characters, in
Proceedings of SIGGRAPH 2001.

A B
Figure 1. A) Bunny model from camera point (16984 triangles, 47 FPS), note the
silhouette quality. B) CSG object showing view frustum (20364 triangles, 41 FPS),
note how the areas outside the view frustum are culled.

Input model ADF
Generation

Generation
parameters

ADF Determine
normal cones

ADFNC

Determine initial active
cells. The initial active
cells are view-indepen-
dent. Each active cell is
associated with one
ADF cell. Compute
rendering elements for
each active cell and
associate them with the
active cell. Compute
NRE, the total number
of rendering elements.

Parameters for
determining

initial active cells

Active cells

Extract rendering
elements from

active cells

Rendering
elements

Rendering
engine

Dynamic
modification
of active cells

View parameters

Frame rate
requirements

NRE

Appendix A: System Diagrams for Dynamic Meshing

Figure A1. System diagram for dynamic meshing using ADFs

Figure A2. System diagram for building a detail-directed normal cone hierarchy using ADFs

Model ADF
Generation

Generation
parameters

ADF Determine normal cone for
each leaf boundary cell ADFNC-LEAF

Either: 1) Sample
the cell to deter-
mine the normals
at those samples
and determine the
normal spread
from the normals
at those samples,

Or, 2) Determine
the cell’s normal
cone by analytic
means from the
cell’s distance
values

ADFNC

Determine normal cone for
each non-leaf boundary
cell from the normal cones
of the cell’s children

Associate each model
element (e.g., triangle)
with the ADF cells which
contain the element

Generate a new normal cone
spatial data structure (e.g.,
octree) from the ADFNC_ELEMS

which comprises the normal
cones and their associated
elements

ADFNC_ELEMSModelNC

Determine normal cones

Figure A3. System diagram for dynamic modification of active cells during dynamic meshing

Determine which cells have too few or too many
rendering elements (RE’s)
1) For each activeCell
• D ← (cell weight)/W – (cell’s #RE’s)/NRE

• If D < t0, too many RE’s so add cell to list
for ascending the tree

• Else if D > t1, too few RE’s so add cell to
list for descending the tree

Active
cells

W

NRE

Descend tree cellsAscend tree cells

Cells to be deletedCells to be added

For cells that have too many or too few RE’s,
determine which cells should be added and
deleted from the set of active cells
1) For each cell with too many RE’s
• Add parent to cells to be added
• Add parent’s boundary children to cells to

be deleted

2) For each cell with too few RE’s, ordered by D,
while time permits, according to frame rate
requirements
• Add cell to cells to be deleted
• Add cell’s boundary children to cells to be

added

Frame rate
requirements

Add and delete cells from the set of active cells
1) For each cell to be deleted
• NRE ← NRE – cell’s # RE’s
• Clear cell’s RE’s
• Delete cell from set of active cells

2) For each cell to be added
• Add cell to set of active cells

Compute rendering elements for new active cells
1) For each cell to be added
• Compute new RE’s, and the cell’s # RE’s
• NRE ← NRE + cell’s # RE’s

Active
cells

Compute the cell weights and
the sum of the cell weights, W
1) W ← 0
2) For each active cell
• Compute cell weight
• W ← W + cell weight

Feedback
system

Weighting
function

ADFNC

ADFNC

NRE

Dynamic modification of active cells

