C:\Users\perry\Desktop\MiniNitro\Nitro\Nitro.h

// Filename: Nitro.h

// Nitro Font Rendering Application Programming Interface (API)
// Version 1.0

// Copyright 2016, MERL, 201 Broadway, Cambridge, MA, 02139

// All rights reserved

// Ronald Perry

[
// To handle multiple inclusion of header files

#ifndef _NITRO_
#define _NITRO_

// Required include files for this header file. All math in Nitro is performed using
// fixed point arithmetic. As described in FixedMath.h, an NTO 11616 is a 32-bit

// two"s complement signed fixed point data type with 1 sign bit, 15 integer bits,
// and 16 fractional bits. The MSB (i.e., bit 31) is the sign bit, bits 30:16 are
// the integer bits, and bits 15:0 are the fractional bits. An NTO_11616 value R

// represents the mathematical value (R / 65536.0). Note that other basic data types
// such as an NTO_I132 are also defined in FixedMath.h.

#include "FixedMath.h"

#ifdef _ _cplusplus
extern "C" {
#endif

// Create and return a thread-safe instance of a renderer. maxPoints defines the
// maximum number of points allowed to represent a tessellated glyph during

// rendering. As a guideline for applications that want to minimize the use of RAM
// for rendering, 1500 points is sufficient to render common Latin and CJK glyphs
// at 500 PPEM or less and requires approximately 8.5 KB whereas 3200 points will
// permit the rendering of more atypical exotic glyphs of high complexity and

// requires approximately 15 KB (use ntoGetRendererSize() to determine the size of
// a renderer instance). A NULL is returned if this function fails.

// Create and return a CSM table with the specified cutoff values. A NULL is
// returned if this function fails.



C:\Users\perry\Desktop\MiniNitro\Nitro\Nitro.h

// Nitro uses a new distance-based antialiasing algorithm to render glyphs. Similar
// to Saffron, Nitro exploits the inherent properties of distance fields to provide
// “Continuous Stroke Modulation® (CSM), i.e., continuous modulation of both stroke
// weight and edge sharpness. CSM uses two rendering parameters, outsideCutoff and

// insideCutoff, to control the mapping of distances to glyph density (i.e., 8-bit

// grayscale) values.

// The internal Nitro function that maps distances to density values has an outside
// cutoff value, below which densities are set to zero, and an inside cutoff value,
// above which densities are set to a maximum density value (i.e., 255). Between

// these two cutoff values, the mapping is linear ranging from zero at the outside
// cutoff value to 255 at the inside cutoff value.

// Adjusting the outside and inside cutoff values affects stroke weight and edge
// sharpness. The spacing between these two parameters is comparable to twice the
// Filter radius of classic antialiasing methods; a narrow spacing provides a

// sharper edge while a wider spacing provides a softer, more filtered edge. When
// the spacing is zero, the resulting density image is a bi-level bitmap. When the
// spacing is very wide, the resulting density image has a watercolor-like edge.
// Typically, users prefer sharp, high contrast edges at small point sizes and

// softer edges for larger point sizes and for animated text.

// Because a glyph®"s edge lies at the zero-valued iso-surface of its corresponding
// distance field, the outside cutoff value typically has a negative value, the

// inside cutoff value typically has a positive value, and their midpoint typically
// lies near zero. Adjusting these parameters to shift the midpoint towards negative
// infinity will increase the stroke weight; shifting the midpoint towards positive
// infinity will decrease the stroke weight. Note that the outside cutoff value must
// always be less than or equal to the inside cutoff value.

// Implementation Notes:

// + The outside and inside cutoff values are constrained to lie approximately in
// the [-1.5, 1.5] interval.

// + Using symmetric CSM values, where abs(outsideCutoff) is equal to insideCutoff,
// will typically result in faster rendering.

// Glyphs are represented by an NTOPath data structure. An NTOPath is composed of a
// series of pen commands (e.g., moveto, lineto, quadto) that define a closed path.
// The endpoints and the control vertices of each segment of a path are specified in
// fixed point (NTO_11616) font units. An NTOPath consists of the following elements:

// (+) minX, maxX, minY, maxY

// (-) The exact bounding box (bBox) of the glyph

// (-) Specified in fixed point (NTO_11616) font units
// (-) May have fractional values

//

// (+) numPenCmds



C:\Users\perry\Desktop\MiniNitro\Nitro\Nitro.h

/7/ ()

(-) The number of pen commands contained in the path
(-) Specified as an NTO_132

penCmds

-) Ptr to a contiguous block of fixed-sized pen commands defining the path

-) All coordinates are specified in fixed point (NTO_11616) font units

-) The first command of each contour is a moveto command

-) The x and y coordinates of the endpoint of the last command of each
contour must equal the x and y coordinates of the contour®s initial
moveto command

AN

// Applications that prefer to scale glyphs prior to rendering via ntoRenderGlyph()

// can

simply specify all coordinates in pixel space and set the rendering scale to

// one. This is a typical scenario when applications are scaling and hinting prior
// to rasterization.

S~ — e

[

// The NTOPenCmd data structure defines a single pen command. A summary of the pen

// commands follows:

//

// (+) moveto

// (-) Has the form <NTO_PEN_MOVETO_CMD x y>

// (-) Starts a new subpath (i.e., contour) of the NTOPath

// (-) Sets the current point to (X, y)

//

// (+) lineto

// (-) Has the form <NTO_PEN_LINETO_CMD x y>

// (-) Appends a straight line segment to the current subpath (i.e., contour)

// of the NTOPath

// (-) The line segment extends from the current point to (X, y)

// (-) After constructing the line segment, sets the current point to (X, Yy)

//

// (+) quadto

// (-) Has the form <NTO_PEN_QUADTO CMD X y cx cy>

// (-) Appends a quadratic Bezier curve segment to the current subpath (i.e.,

// contour) of the NTOPath

// (-) The quadratic Bezier curve segment extends from the current point to

// (X, y) using (cx, cy) as the Bezier control point

// (-) After constructing the curve segment, sets the current point to (X, y)

Y e it et

[

#define NTO_PEN_MOVETO_CMD 1 // Sets the current point of the subpath

#define NTO_PEN_LINETO_CMD 2 // Appends a line segment

#define NTO_PEN_QUADTO_CMD 3 // Appends a quadratic Bezier curve segment

[

S~ —

typedef struct {
NTO_132 opCode; // NTO_PEN_MOVETO_CMD, NTO_PEN_LINETO_CMD, etc.
NTO_11616 X, Y; // Data for this command (see above)
NTO_ 11616 CX, CY; // Data for this command (see above)

} NTOPenCmd;

Y e it et

[

typedef struct
NTO_11616 minX; // The minimum x-coordinate of the glyph"s bBox
NTO 11616 maxX; // The maximum Xx-coordinate of the glyph"s bBox
NTO_11616 minyY; // The minimum y-coordinate of the glyph"s bBox
NTO 11616 maxy ; // The maximum y-coordinate of the glyph"s bBox
NTO_132 numPenCmds; // Number of pen commands defining the path
NTOPenCmd *penCmds; // Array of pen commands defining the path

3 NTOPath;

// Rendering attributes for ntoRenderGlyph. If IcdMode is 0 (standard pixel-based
// rendering is desired), buffer will contain the rendered result upon return
// (buffer must be pre-allocated by the caller). If IcdMode is 1 (subpixel / LCD



C:\Users\perry\Desktop\MiniNitro\Nitro\Nitro.h

rendering is desired), the three buffers bufferR, bufferG, and bufferB (one for
each color channel) will contain the rendered result upon return (all 3 buffers
must be pre-allocated by the caller). We refer to both buffer and bufferR,
bufferG, and bufferB as the "output rendering buffer'”. The width w and height h

of the output rendering buffer can be computed via ntoComputeBufferSize().
ntoComputeBufferSize() forces 4-byte alignment of scanlines in the output
rendering buffer and provides sufficient room for filtering the edges of the
glyph. The data in the output rendering buffer is stored in row major order, with
the first elements of the data comprising the components of the bottom-left corner
of the image. The BiItBLT size (in pixels) of the output rendering buffer is w x h.
When subpixel / LCD rendering is selected, color fringing can occur. To reduce
these artifacts at the cost of some blurriness, set reduceColor to 1; to leave the
RGB values unaltered, set reduceColor to O.

Note that the NTOPath is scaled to the requested size and translated to the
bottom-left corner of the image. The (X,y) translation applied, which is required
for BitBLTing and typesetting glyphs, can be computed via ntoComputePenOffset().

typedef struct {

}

//
//

void *renderer; // Renderer instance

NTOPath *ntoPath; // NTO path to render (allocated & set by the caller)
NTO_ 11616 scale; // NTO_11616 version of (PPEM / Units per EM)

NTO_132 w; // BitBLT width (computed via ntoComputeBufferSize())
NTO_132 h; // BitBLT height (computed via ntoComputeBufferSize())
NTO_132 xOffset; // x offset to add to pen x (see ntoComputePenOffset())
NTO_132 yOffset; // y offset to add to pen y (see ntoComputePenOffset())
NTO_132 quality; // 0: Normal, 1: Higher, 2: Highest

NTO_132 IcdMode; // 0: Normal pixel rendering, 1: Subpixel /7 LCD rendering
NTO_132 reduceColor; // 0: No color reduction, 1: Reduce color fringing

void *csmTable; // CSM table to use for rendering

NTO_U8 *buffer; // Grayscale rendering buffer allocated by caller
NTO_U8 *bufferR; // Red channel rendering buffer allocated by caller
NTO_U8 *bufferG; // Green channel rendering buffer allocated by caller
NTO_U8 *bufferB; // Blue channel rendering buffer allocated by caller
NTORenderAttrs;

Render the glyph described by attrs with the specified renderer attrs->renderer.
A zero is returned upon success; a non-zero is returned upon failure. A typical
rendering session proceeds as follows:

void *renderer = ntoCreateRenderer(maxPoints)

void *csmTable = ntoCreateCSMTable(outsideCutoff, insideCutoff)

Allocate a target buffer to hold the result, sized to handle the largest PPEM

Set constant NTORenderAttrs: renderer, scale, quality, lcdMode, csmTable, buffer

Set initial penX, penY

For each glyph to render {
Get the NTOPath for the current glyph and set ntoPath in NTORenderAttrs
Compute NTORenderAttrs w and h via ntoComputeBufferSize()
Compute NTORenderAttrs xOffset and yOffset via ntoComputePenOffset()
Render the glyph into the target buffer via ntoRenderGlyph()
BitBLT the target buffer to the display with the bottom-left corner positioned
at (penX + xOffset, penY + yOffset) and a width and height in pixels of w x h
Advance penX and penY

by

Free target buffer

ntoDestroyCSMTable(csmTable)

ntoDestroyRenderer(renderer)

Determine the width attrs->w and height attrs->h of the output rendering buffer
based on the specified rendering attributes



C:\Users\perry\Desktop\MiniNitro\Nitro\Nitro.h

void ntoComputeBufferSize (NTORenderAttrs *attrs);

// Determine the x and y offsets (attrs->x0ffset and attrs->yOffset) used for

// BitBLTing and typesetting glyphs based on the specified rendering attributes.
// These offsets are added to the typesetting pen position to determine the BItBLT
// position for the output rendering buffer.

// Return the number of points required to represent a tessellated form of the glyph
// described by attrs. attrs->renderer, attrs->ntoPath, and attrs->scale must be set
// prior to invocation.



