
The Conclusion
Cluster Trees were used to generate ADFs from several standard outline-based font representations. On average, querying the cluster tree required 24 
distance-to-bounding box computations and less than three distance-to-quadratic Bezier curve computations per sample point. Computing the distance 
from a point to a quadratic Bezier curve takes approximately 20 times as long as computing the distance from a point to an axis-aligned bounding box. 
Hence, for an average glyph containing 40 Bezier curve segments, using Cluster Trees resulted in a 10X reduction in computation during querying. Total 
ADF generation times, which included building a Cluster Tree for each glyph, were reduced on average by 28 to 49%.

Querying a Cluster Tree

Compute the minimum distance from a given point P to the glyph’s outline.

Starting with the children of 
the root node, create a sorted 
list of nodes to query. The list 
is sorted by the minimum 
distance from each bounding 
box to P.  Here, dist(P, A) < 
dist(P, B) so A is queried before 
B.

BA

Root

A

B

P.

BAQuery

Remove the head of the list 
and insert its children into the 
sorted list. Here, A is removed 
from the sorted list and its 
three children are inserted.

A2A1 A3

BA

Root

A1

A3 A2

B

P.

A1A2 A3BQuery

Repeat this process until a leaf node is 
encountered. Here, A2 is removed from the 
sorted list and its children are inserted. P is now 
closest to c4.

c8
c1

c2

c3
c7

c6
c5 c4

A1

A3

B

P.

A1

BA3 c8

c7c6c5c4 c3

c2 c1

Query

c4 c6c5 c7c3c2 c8c1

A2A1 A3

BA

Root

Update the minimum distance to the glyph’s 
outline when a leaf node is encountered. Stop 
querying the Cluster Tree when the minimum 
distance is less than the distance from P to the 
node at the head of the list. Here, c4 is a leaf 
node containing a Bezier curve segment δc4. The 
minimum  distance is updated to dist(P, δc4). 
Since dist(P, δc4) < dist(P, A1), the query is 
complete.

c4 c6c5 c7c3c2 c8c1

A2A1 A3

BA

Root
c8

c1
c2

c3
c7

c6
c5

A1

A3

B

P.

B

A1

A3 c8

c7c6c5 c3

c2 c1

Query

The axis-aligned bounding 
boxes of the glyph’s 
Bezier curves form an ini-
tial set of leaf nodes of the 
Cluster Tree. Proximity is 
used to cluster these leaf 
nodes into groups.

Leaf nodes whose bounding box centers are 
closer than a maximum pairing distance are 
clustered into groups. The bounding boxes of 
these groups form intermediate nodes which 
are recursively clustered to form the Cluster 
Tree. The maximum pairing distance is 
increased at each recursion level.

In this example, the bounding boxes of the glyph’s segments 
form the leaf nodes of the Cluster Tree. During the first level 
of recursion, the leaf nodes are clustered into five 
intermediate nodes. During the second level of recursion, 
these five nodes are clustered into two new intermediate 
nodes. These two nodes become the children of the root node 
of the Cluster Tree.

··
·
·
·
·
·

· ·

·

·
· · · · ·

·
··· ·
·

··· ··
· ······

·
·
·· ··

· · ··
·
·
·
·
·

· ·

·

·
· · · · ·

·
··· ·
·

··· ··
· ······

·
·
·· ··

· ·

Add A

A

··
·
·
·
·
·

· ·

·

·
· · · · ·

·
··· ·
·

··· ··
· ······

·
·
·· ··

· ·

Add B

B

··
·
·
·
·
·

· ·

·

·
· · · · ·

·
··· ·
·

··· ··
· ······

·
·
·· ··

· ·

Add C

C

··
·
·
·
·
·

· ·

·

·
· · · · ·

·
··· ·
·

··· ··
· ······

·
·
·· ··

· ·

D is too far away

D

Root

··
·
·
·
·
·

· ·

·

·
· · · · ·

·
··· ·
·

··· ··
· ······

·
·
·· ··

· ·

Building a Cluster Tree
Organize the axis-aligned bounding boxes into a hierarchical spatial data structure.

≈

A Solution
Eliminate unnecessary distance computations using a spatial hierarchy of the axis-aligned bounding boxes of the glyphs’s Bezier curves.

Computing the distance field for a character glyph from its outline representation requires many distance queries from the relatively small number of static lines 
and Bezier curves in the outline.  Existing spatial indexing methods are not well-suited to performing minium distance queries on such data. 

Adaptively Sampled Distance 
Fields (ADFs) provide an efficient 
means for representing and 
processing distance fields.

A Distance Field is a scalar field 
representing a shape S with 
boundary δS that specifies the 
distance to δS from any point in 
the field.

-130  -95   -62   -45    -31   -46    -57   -86   -129

-90   -49    -2 17 25 16 -3     -43   -90

-71     -5     30 -4   -38   -32     

50   -93     

-3

-46     12 1 -50   - -3

Converting conventional outline-based fonts to ADFs requires computing the 
minimum distance from each point in the ADF to the glyph’s outline. A naïve 
approach computes the distance from each point to each line and Bezier curve of the 
glyph’s outline and selects the minimum distance. However, this approach is 
computationally expensive.

min distance to δS

The Motivation

Computing the distance field of an outline font requires many costly queries. 

Outline fonts require complicated hinting & suffer from poor anti-aliasing. This leads to excessively blurry and inconsistently rendered glyphs which makes text 
difficult to read, especially at smaller sizes. Using Adaptively Sampled Distance Fields to render fonts requires no hinting and results in better antialiasing.

The Background
Adaptively Sampled Distance Fields provide many advantages over traditional methods, such as outlines,  for representing and rendering fonts. 

Outlines are used  to determine which pixels to color.   
Outlines may align differently relative to pixel 
boundaries based upon placement on the page. 
Hinting minimizes these differences.

Typical outline-based fonts are 
composed of line segments and 
Bezier curves.

Straight Line

Quadratic Bezier

c (t=1)

a (t=0)

b 

x(t)

x(t) = a(1-t)2 + 2bt(1-t) + ct2

Aliasing can occur whenever a continuous function is sampled 
at discrete intervals. In images, it can introduce artifacts such 
as the jagged edges of a line. Anti-aliasing can reduce these 
artifacts, e.g., by ‘smoothing’ out the jagged edges.

Aliased Line Anti-aliased Line

The Abstract
Hierarchical data structures provide a means for organizing data for efficient processing. Most spatial data structures are optimized for performing queries, such as 
intersection and containment testing, on large, often dynamic, data sets. Set up time and complexity of these structures can limit their value for small, static data 
sets. We have developed a spatial data structure and associated query algorithm, dubbed Cluster Trees, for providing efficient minimum distance queries from an 
arbitrary point in space to a small set of Bezier curves. Cluster Trees have been used to significantly reduce the time required to generate an Adaptively Sampled 
Distance Field (ADF) representing a character glyph such as the letter ‘A’ from a standard outline representation consisting of lines and Bezier curves.

Efficient Distance Field Computation using Cluster Trees Elena Jakubiak,  Tufts University Department of Computer Science  • Sarah Frisken,  Tufts University Department of Computer Science • Ronald Perry,  Mitsubishi Electric Research Laboratories


