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Abstract. Hierarchical spatial data structures provide a means for organizing data
for efficient processing. Most spatial data structures are optimized for performing
queries, such as intersection and containment testing, on large data sets. Set-up
time and complexity of these structures can limit their value for small data sets, an
often overlooked yet important category in geometric processing. We present a new
hierarchical spatial data structure, dubbed a proximity cluster tree, which is partic-
ularly effective on small data sets. Proximity cluster trees are simple to implement,
require minimal construction overhead, and are structured for fast distance-based
queries. Proximity cluster trees were tested on randomly generated sets of 2D Bézier
curves and on a text-rendering application requiring minimum-distance queries to
2D glyph outlines. Although proximity cluster trees were tailored for small data
sets, empirical tests show that they also perform well on large data sets.

1. Introduction

Data sets can be searched faster when they are well-organized. For example,
geometric objects, such as points and curves, can be arranged into hierarchi-
cal structures that expedite searches, such as nearest-neighbor queries (i.e.,
finding the closest object to a given point). Brute force can be used to search
small data sets, but when the volume of queries on a small data set is high,
the cumulative query times can limit overall performance. In such situations,
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small data sets should be hierarchically organized. Classic hierarchical spatial
data structures, however, were developed for querying large data sets and are
inefficient when applied to small data sets.

Prozximity cluster trees (PCTs) are hierarchical spatial data structures that
organize spatial objects for fast minimum-distance computations. PCTs are
constructed using a simple and efficient clustering heuristic that exploits nat-
ural spatial subdivisions in the data. Therefore, the structure of PCTs reflects
the spatial layout of the data, making PCTs fast to query and ideal for ap-
plications that require many queries of small data sets. Moreover, empirical
tests show that they also perform well on larger data sets. While our current
algorithm is geared and implemented for querying 2D objects, we are cur-
rently investigating extending PCT's to three dimensions using 3D bounding
elements such as bounding spheres and bounding boxes.

2. Background

It is common to search spatial data sets, such as those encountered in ge-
ographic information systems, for the closest object to a given point (e.g,
what is the closest lake to my house). Applications that use distance-based
queries are common in human-computer interaction (e.g., on which object did
a user click), robotics (e.g., which objects are within reach of a mechanical
arm), and collision detection (e.g., which objects are most likely to collide
in the next time interval). Computer science literature is rich with research
that addresses how to speed up distance-based queries for large data sets
[Guttman 84, Hjaltason and Samet 99, Roussopoulos et al. 95]. Spatial data
sets containing a small number of objects (e.g., fewer than 100 objects) are
commonly searched using brute-force approaches. In some instances, however,
brute-force searches of small data sets are too slow, especially when there is
a high volume of queries (e.g., over 30,000 queries) and when the queries are
part of a time-critical processing step.

There are two general approaches to speed up queries on spatial data sets:
(1) geometric objects can be processed in terms of associated, simplified
bounding regions, and (2) objects can be organized into spatial hierarchies.
Simplified bounding regions, such as circles and rectangles in 2D or spheres
and boxes in 3D, can be used to determine the general location of spatial ob-
jects without having to process the often complex geometric details of these
objects (see Figures 1(a) and 1(b)). This approach is commonly used in
collision detection, where objects collide only when their bounding regions
overlap. Consequently, unnecessary, often expensive tests to determine if two
objects have collided can be avoided by first checking if their bounding regions
overlap.
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Figure 1. Bounding regions can be used to simplify object representations for
faster processing. (a) Axis-aligned bounding boxes are easy to compute, provide
a relatively tight fit, and have a reasonably fast point-to—bounding region distance
computation. (b) Bounding circles have a fast point-to-boundary region distance
computation, but there may be excessive overlap between bounding regions. (c) For
added efficiency, bounding regions can be organized into a hierarchical spatial data
structure.

Using bounding regions alone, however, still requires an exhaustive test
between the bounding regions of all objects. Such exhaustive searches can
be avoided by organizing objects into a hierarchical spatial data structure
(see Figure 1(c)). Hierarchical spatial data structures are often used in areas
such as robotics (e.g., for motion planning), computer graphics (e.g., for ray
tracing), and computational geometry (e.g., for intersection and containment
testing). The hierarchical spatial data structure arranges objects into a tree-
like structure with a root node that contains a bounding region of all the
objects, internal nodes that contain a subset of the geometric objects and a
bounding region that encloses all of these objects, and leaf nodes that contain a
single geometric object and a bounding region enclosing that object. During
a distance-based query, it is possible to prune entire branches of the tree,
thereby eliminating objects contained in the leaves of the pruned branches
from further testing. This can significantly reduce the number of distance
computations.
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Figure 2. An example illustrating how a fixed number of children can impose
unnatural subdivisions. (a) Using a binary tree as a model for a hierarchical spatial
data structure can force poor grouping. (b) Allowing the number of children to vary
leads to more natural clustering.

Classic hierarchical spatial data structures were developed for large data
sets. When used for small data sets, the set-up time for constructing the spa-
tial hierarchies can outweigh the time savings of querying well-organized data.
Furthermore, most hierarchical spatial data structures fix the number of chil-
dren that a node may have for part or all of the construction process [van den
Bergen 97, Gottschalk et al. 96, Sappa and Garcfa 04, Xavier 96], thereby fre-
quently forcing unnatural subdivisions between objects (see Figure 2). PCTs
require minimal set-up time and do not fix the number of children that a node
may have, thereby promoting a natural spatial clustering of objects.

3. Proximity Cluster Trees
3.1. Structure of a Proximity Cluster Tree

PCTs hierarchically group objects using axis-aligned bounding boxes as the
bounding regions. PCTs reflect the spatial layout of the objects they con-
tain. Larger objects, which are likely to be processed more frequently during
a query, can exist at the same level in the tree as similarly sized clusters
of objects. Internal nodes may contain a variable number of children (see
Figure 1(c)). This natural organization of objects results in a “well-formed”
spatial hierarchy where (1) objects processed more frequently during a query
reside higher up in the tree, (2) overlap between the bounding regions of clus-
ters is minimized, and (3) the tree has as few levels as possible given the
previous two constraints. These features of well-formed spatial hierarchies
promote faster distance-based queries.
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Figure 3. An example illustrating PCT construction. (a) All objects are initialized
as children of the root node. (b) During the first application of the proximity
clustering algorithm, the two dark-red nodes are identified as nearest neighbors and
are clustered into the new light-red node. (c) Later during the first application, the
three dark-blue nodes are clustered with their nearest neighbors, resulting in the
new light-blue node. (d) During the second application of the proximity clustering
algorithm, the clustering distance is increased. The light-red node and the yellow
nodes are clustered into the new orange node.

3.2. Constructing a Proximity Cluster Tree

PCTs are fast and easy to construct. The initial PCT has only two levels—
a root node and its children (see Figure 3(a)). Each child contains a sin-
gle geometric object. The PCT is built by iteratively applying a proximity
clustering algorithm to the tree. The proximity clustering algorithm creates
internal nodes by clustering children of the root node based on their size and
proximity.

The distance between the geometric centers of the bounding regions of any
two nodes N7 and Ny (the “center-to-center” distance) reflects both the sep-
aration distance and the size of the bounding regions of N; and N;. The
center-to-center distance can be computed quickly and does not require user-
tuned parameters. Each application of the proximity clustering algorithm
clusters children of the root node whose center-to-center distances are less
than a specified clustering distance (see Figures 3(b) and 3(c)). The spec-
ified clustering distance is increased with each application of the proximity
clustering algorithm (see Figure 3(d)). This ensures that nodes that are of
the same size and in the same proximity are clustered together for creating a
well-formed spatial hierarchy. A PCT can be constructed using the following
steps:

1. Create an initial PCT with two levels—a root node and its children,
where each child contains a single geometric object.
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2. Define MAX_APPS, the maximum number of times the proximity cluster-
ing algorithm is applied to the tree.

3. Define MAX_CHILDREN, the maximum allowable number of children of the
root node.

4. Compute P,y,, the average perimeter of all the bounding regions of the
objects.

5. Initialize Napps, the number of applications of the proximity clustering
algorithm, to 1.

6. While the root node has more than MAX_CHILDREN and N,,ps < MAX_APPS,
apply the proximity clustering algorithm (Steps 6(a)-6(c)) and incre-
ment the number of applications of the proximity clustering algorithm
(Step 6(d)) as follows:

* Pzwg
apps ™ MAX_APPS®

(b) Label all children of the root node as “old” nodes.
(¢) For each old child node C; of the root node,

i. Find its sibling with the closest center-to-center distance.

(a) Compute the clustering distance, Deiyster =

ii. If the center-to-center distance between C; and its closest sib-

ling is less than Dgjyster, merge the nodes in one of two ways:

A. If the closest sibling is another old node, create a “new”

child of the root node and move both C; and its closest sib-
ling from being children of the root node to being children
of the new node.

B. If the closest sibling is a new node, move C; from being a
child of the root node to being a child of its closest sibling.

(d) Increment Nypps.

The shape of the PCT is affected by the two user parameters MAX_APPS
and MAX_CHILDREN (see Table 1 and Figure 5 for typical values). During each
application of the proximity clustering algorithm, several children of the root
node may be clustered into a single node, and some children of the root node
may not be clustered at all, providing a natural clustering that reflects the
layout of the spatial data.

This simple clustering heuristic favors grouping nodes that are of the same
size and in the same proximity, leading to a well-formed spatial hierarchy
where (1) objects processed more frequently during a query reside higher up
in the tree, (2) overlap between the bounding regions of clusters is minimized,
and (3) the tree has as few levels as possible given the previous two constraints.
In rare cases, the proximity clustering algorithm fails to group nodes that are
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Figure 4. An example illustrating a PCT that fails to group nodes that are of
the same size and in the same proximity. (a) The geometric center of the leaf node
containing the indicated small ant is closest to the geometric center of the leaf node
containing the large ant. (b) The proximity clustering algorithm groups the small
ant with the large ant instead of with the other small ants. This leads to a PCT
that is less efficient to query because the leaf node containing the small ant will be
processed more often than necessary during a query. (¢) Grouping all of the small
ants together leads to a PCT that is more efficient to query.

of the same size and in the same proximity. This occurs when the bounding
regions of the two nodes are of drastically different sizes yet their geometric
centers are close (see Figure 4(a)). In such cases, a proximity cluster tree
is still constructed but may be less efficient to query because the smaller
node, which should be processed less frequently during a query, is processed
as frequently as the larger node (see Figures 4(b) and 4(c)).

3.3. Querying a Proximity Cluster Tree

Although both depth-first and breadth-first searches are possible for top-down
querying of hierarchical spatial data structures, both use a pre-determined
search order and hence can be inefficient. Instead, we use a best-first search
similar to that of Hjaltson and Samet, which proceeds by choosing to investi-
gate the candidate node most likely to contain the desired object [Hjaltason
and Samet 99]. For a minimum-distance query, with the goal of finding the
closest object to a query point p, we proceed as follows:

1. Compute the distance from p to the bounding box of each child of the
root node.

2. Insert the children of the root node into a sorted list Loqes, Where
the nodes of Ly,qes are sorted in ascending distance from p to their
respective bounding boxes, as computed in Step 1.
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3. Initialize the current minimum distance D, to a large positive value.

4. While the minimum distance to the first node in Lyo4es iS less than
Dynin, remove the first node from Ly oqes and process it as follows:

(a) When the node is a nonleaf node, unpack its child nodes and place
them into L,oges 10 sorted order.

(b) When the node is a leaf node, compute the distance from p to the
object contained in the leaf node and update Dy, if appropriate.

The algorithm terminates when the minimum distance to the bounding box of
the first node in Ly q4es is greater than D ,;, since all of the objects contained
in nodes at and beyond this point are guaranteed to be farther from p than
the current closest object.

4. Results
4.1. Overview

PCTs were developed to accelerate the generation of adaptively sampled dis-
tance fields (ADFs) [Frisken et al. 00] from outline-based glyphs (e.g., True-
Type fonts) for representing and rendering high-quality text [Frisken and
Perry 06, Perry and Frisken 05]. Glyph outlines typically consist of line seg-
ments and a relatively small number of quadratic Bézier curves (e.g., 30) that
are reasonably well-distributed spatially. Although our implementation was
tailored for processing glyph outlines, experiments show that PCTs also per-
form well on larger data sets of randomly located quadratic Bézier curves.
However, if the objects are very sparsely distributed spatially (e.g., the dis-
tance between objects is significantly larger than the perimeters of the ob-
jects), the method for computing the clustering distance needs to be tailored
to the data.

We compared PCTs to several methods for performing distance queries:
a brute force approach, pruning using various simple bounding regions (i.e.,
axis-aligned bounding boxes, the triangular convex hulls of quadratic Bézier
curves, and bounding circles), and organizing the objects into a spatial hierar-
chy using the trees presented by Garcfa, Sappa, and Basafiez (GSBTs) [Garcia
et al. 99], adapted to use axis-aligned bounding boxes in place of bounding
circles.

We considered many existing algorithms that were developed to expedite
distance-based queries. However, most algorithms fail to address the need for
both quick initialization and well-formed trees. GSBTs were selected as the
most promising existing approach for querying the minimum distance to a
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small set of geometric objects since GSBTs are constructed using a straight-
forward approach that considers the general layout of objects before grouping
them. GSBTs are created by first constructing an initial minimal spanning
tree (a binary tree) using a proximity and size-based cost function. An n-
ary tree is then formed from the initial binary tree by merging neighboring
clusters according to their costs.

4.2.  Simple Bounding Regions

We tested the use of a variety of simple, non-hierarchical bounding regions
for pruning quadratic Bézier curves from the minimum distance query. These
tests were performed on glyphs from a variety of typefaces. Results are pre-
sented for Arial and Times New Roman in Table 1; tests performed on other
typefaces produced similar results. Axis-aligned bounding boxes, bounding
circles, and bounding triangles (i.e., the convex hull of each quadratic Bézier
curve) were used as bounding regions. Of these three bounding regions, axis-
aligned bounding boxes produced the best results because of simple distance
computations and sufficiently tight bounding regions.

4.3. Hierarchical Bounding Regions

Using bounding regions alone requires that for each query point, the point-
to—bounding region distance is computed for every geometric object. Placing
bounding regions in a hierarchical spatial data structure can significantly re-
duce the number of point-to-bounding region queries as demonstrated by
PCTs and GSBTs [Garcia et al. 99]—both methods significantly improve
times for generating ADFs from glyph outlines (see Table 1). Figure 5 com-
pares initialization and query times for these two methods applied to sets of
randomly generated quadratic Bézier curves and randomly generated query
points.

For small data sets, such as the quadratic Bézier curves of a glyph’s out-
lines, both the initialization and query times are slightly better for PCTs
than for GSBTs, resulting in font-generation times that are 5-15% faster (see
Table 1). With randomly generated curves, PCTs demonstrate significantly
faster initialization times and faster query times over GSBTs as the number
of curves increases (see Figure 5). Additionally, PCTs do not require imple-
menting supporting algorithms (e.g., an algorithm to construct a minimum
spanning tree) as required by GSBTs, thereby simplifying implementations.

The better query times of PCTs over GSBTs can be understood by con-
sidering the structure produced by the two methods (see Figure 6). PCTs
initially group objects into variable-sized clusters using global information,
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Font Method Initialization | Query Time (ms) | Glyphs per
Time (ms) Second

Arial brute force 0.0000 7.00 142.82
bounding boxes 0.0151 1.39 714.10

bounding triangles 0.0210 1.97 501.19

bounding circles 0.0194 1.66 596.86

PCTs 0.0167 0.79 1244.06

GSBTs 0.0602 0.87 1081.14

Times brute force 0.0000 14.45 69.20
New bounding boxes 0.0106 2.50 397.67
Roman | bounding triangles 0.0134 3.66 272.08
bounding circles 0.0192 2.97 334.64

PCTs 0.0236 1.37 719.54

GSBTs 0.1021 1.45 645.45

Table 1. ADF generation times are compared using brute force, simple bounding
regions, PCTs, and GSBTs [Garcia et al. 99] to prune the quadratic Bézier curves
of glyph outlines when computing minimum distances for antialiasing TrueType
fonts. Results are measured based on the number of ADF glyphs generated per
second using each method. Average times required to construct the particular data
structure and to query the minimum distance for each glyph are also reported. In
this example, PCTs were constructed using MAX_APPS = 4 and MAX_CHILDREN = 6.

Initialization Time per Set Query Time per Object
1.0 I T T I 0.040
—e— PCTs 0.035 |- —e—— PCTs
0.8 |
— o— GSBTs w 000 = o  GSBTs
P 2 0025
G 06 § :
§ / g 0020 /
0.4 =
»n / g 0015
0.010
0.2
0.005 ,/
0.0 0.000 —
8 16 32 64 128 256 512 1024 2048 8 16 32 64 128 256 512 1024 2048
Number of Objects in Set Number of Objects in Set
Figure 5. The initialization and query times of PCTs were compared to

GSBTs [Garca et al. 99] for sets of randomly generated quadratic Beziér curves
and randomly generated query points. In this example, PCTs were constructed
using MAX_APPS = 16 and MAX_CHILDREN = 6

providing a well-formed spatial hierarchy. In contrast, GSBTs tend to be un-
balanced, thus making queries less efficient. GSBT's form clusters using local
information. Although an object may be most similar to a given cluster from
a global perspective, it may seem to differ locally, thereby forcing the creation
of a new cluster resulting in a spatial hierarchy that poorly represents the
underlying data (see Figure 6(b)).



“jgt” — 2008/3/21 — 18:37 — page 67 — #11

Hutchinson et al.: Proximity Cluster Trees 67

Rqot

[ H‘\\;II‘I

T
[ | | e e
DED D‘DD‘DD&D 5617 418 3 1920

91011 12131415 7 8 16

(a)
Figure 6. TrueType glyph outlines consist of line segments and quadratic Bézier
curves. It is time-intensive to compute the distance to a quadratic Bézier curve.
Organizing Bézier curves into a hierarchical spatial data structure expedites finding
the closest curve. (a) PCTs better represent the layout of the underlying data in
a well-formed structure. (b) GSBTs [Garcia et al. 99] form clusters using local
information that can force globally similar objects into different clusters, resulting
in an unbalanced structure.
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