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Method for Converting a Two-Dimensional Distance Field to a Set of 

Boundary Descriptors 

 

Field of the Invention 

 

[01] The invention relates generally to the field of computer graphics, and more 

particularly to converting two-dimensional distance fields to boundary descriptors. 

 

Background of the Invention 

 

[02] In the field of computer graphics, the rendering of two-dimensional objects 

is of fundamental importance. Two-dimensional objects, such as character shapes, 

corporate logos, and elements of an illustration contained in a document, are 

rendered as static images or as a sequence of frames comprising an animation. 

There are numerous representations for two-dimensional objects and it is often the 

case that one representation is better than another representation for specific 

operations such as rendering and editing. In these cases, a conversion from one 

form to another is performed. 

 

[03] Although we focus here on digital type, possibly the most common and 

important two-dimensional object, the following discussion applies to all types of 

two-dimensional objects. 

 

[04] We begin with some basic background on digital type. A typical Latin font 

family, such as Times New Roman or Arial, includes a set of fonts, e.g., regular, 

italic, bold and bold italic.  Each font includes a set of individual character shapes 

called glyphs. Each glyph is distinguished by its various design features, such as 
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underlying geometry, stroke thickness, serifs, joinery, placement and number of 

contours, ratio of thin-to-thick strokes, and size.  

 

[05] There are a number of ways to represent fonts, including bitmaps, outlines, 

e.g., Type 1 [Adobe Systems, Inc. 1990]  and TrueType [Apple Computer, Inc. 

1990], and procedural fonts, e.g., Knuth’s Metafont, with outlines being 

predominant. Outline-based representations have been adopted and popularized by 

Bitstream Inc. of Cambridge, Mass., Adobe Systems, Inc. of Mountain View, 

Calif., Apple Computer, Inc., of Cupertino, Calif., Microsoft Corporation of 

Bellevue, Wash., URW of Hamburg, Germany, and Agfa Compugraphic of 

Wilmington, Mass. 

 

[06] Hersch, “Visual and Technical Aspects of Type,” Cambridge University 

Press. 1993 and Knuth, ‘TEX and METAFONT: New Directions in Typesetting,” 

Digital Press, Bedford, MA 1979, contain comprehensive reviews of the history 

and science of fonts. 

 

[07] Of particular importance are two classes of type size: body type size and 

display type size. Fonts in body type are rendered at relatively small point sizes, 

e.g., 14 pt. or less, and are used in the body of a document, as in this paragraph. 

Body type requires high quality rendering for legibility and reading comfort. The 

size, typeface, and baseline orientation of body type rarely change within a single 

document. 

 

[08] Fonts in display type are rendered at relatively large point sizes, e.g., 36 pt. 

or higher, and are used for titles, headlines, and in design and advertising to set a 

mood or to focus attention. In contrast to body type, the emphasis in display type is 
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on esthetics, where the lack of spatial and temporal aliasing is important, rather 

than legibility, where contrast may be more important than antialiasing. It is crucial 

that a framework for representing and rendering type handles both of these two 

classes with conflicting requirements well. 

 

[09] Type can be rendered to an output device, e.g., printer or display, as bi-level, 

grayscale, or colored. Some rendering engines use bi-level rendering for very small 

type sizes to achieve better contrast. However, well-hinted grayscale fonts can be 

just as legible. 

 

[010] Hints are a set of rules or procedures stored with each glyph to specify how 

an outline of the glyph should be modified during rendering to preserve features 

such as symmetry, stroke weight, and a uniform appearance across all the glyphs in 

a typeface.  

 

[011] While there have been attempts to design automated and semi-automated 

hinting systems, the hinting process remains a major bottleneck in the design of 

new fonts and in the tuning of existing fonts for low-resolution display devices. In 

addition, the complexity of interpreting hinting rules precludes the use of hardware 

for font rendering. The lack of hardware support forces compromises to be made 

during software rasterization, such as the use of fewer samples per pixel, 

particularly when animating type in real time. 

 

[012] Grayscale font rendering typically involves some form of antialiasing. 

Antialiasing is a process that smoothes out jagged edges or staircase effects that 

appear in bi-level fonts. Although many font rendering engines are proprietary, 
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most use supersampling, after grid fitting and hinting, with 4 or 16 samples per 

pixel followed by down-sampling with a 2x2 or 4x4 box filter, respectively. 

 

[013] Rudimentary filtering, such as box filtering, is justified by the need for 

rendering speed. However, even that approach is often too slow for real-time 

rendering, as required for animated type, and the rendered glyphs suffer from 

spatial and temporal aliasing. 

 

[014] Two important trends in typography reveal some inherent limitations of 

prior art font representations and thus provide the need for change. 

 

[015] The first trend is the increasing emphasis of reading text on-screen due to the 

dominant role of computers in the office, the rise in popularity of Internet browsing 

at home, and the proliferation of PDAs and other hand-held electronic devices. 

These displays typically have a resolution of 72-100 dots per inch, which is 

significantly lower than the resolution of printing devices. 

 

[016] This low-resolution mandates special treatment when rasterizing type to 

ensure reading comfort and legibility, as evidenced by the resources that 

companies such as Microsoft and Bitstream have invested in their respective 

ClearType and Font Fusion technologies. 

 

[017] The second trend is the use of animated type, or kinetic typography. 

Animated type is used to convey emotion, to add interest, and to visually attract the 

reader’s attention. The importance of animated type is demonstrated by its wide 

use in television and Internet advertising. 
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[018] Unfortunately, traditional outline-based fonts have limitations in both of 

these areas. Rendering type on a low-resolution display requires careful treatment 

in order to balance the needs of good contrast for legibility, and reduced spatial 

and/or temporal aliasing for reading comfort.  

 

[019] As stated above, outline-based fonts are typically hinted to provide 

instructions to the rendering engine for optimal appearance. Font hinting is labor 

intensive and expensive. For example, developing a well-hinted typeface for 

Japanese or Chinese fonts, which can have more than ten thousand glyphs, can take 

years. Because the focus of hinting is on improving the rendering quality of body 

type, the hints tend to be ineffective for type placed along arbitrary paths and for 

animated type.  

 

[020] Although high quality filtering can be used to antialias grayscale type in 

static documents that have a limited number of font sizes and typefaces, the use of 

filtering in animated type is typically limited by real-time rendering requirements. 

 

Summary of the Invention 

 

[021] The invention provides a method for converting a two-dimensional distance 

field to a set of boundary descriptors. An iso-contour of the two-dimensional 

distance field is selected. An ordered list of points is generated from the iso-

contour and the two-dimensional distance field. A set of boundary descriptors is 

initialized to fit the ordered list of points. The set of boundary descriptors is 

updated by determining an error for each boundary descriptor using the two-

dimensional distance field and refining the set of boundary descriptors based on 

the error for each boundary descriptor. 
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Brief Description of the Drawings 

 

[022] Figure 1A and 1B are block diagrams of prior art distance field 

representations for glyphs; 

 

[023] Figure 2A and 2B are block diagrams of distance field representations 

according to a preferred embodiment of the invention; 

 

[024] Figure 3 is a block diagram of a bi-quadratic cell of the distance field 

according to a preferred embodiment of the invention; 

 

[025] Figure 4 is a flow diagram of a method for antialiasing an object in image-

order according to the invention; 

 

[026] Figure 5 is a graph of a linear filter used by the invention; 

 

[027] Figure 6A, 6B, and 6C are diagrams of samples near a component of a pixel; 

 

[028] Figure 7 is a flow diagram of a method for antialiasing an object in object-

order according to the invention; 

 

[029] Figure 8 is a flow diagram of a method for distance-based automatic hinting 

according to the invention; 

 

[030] Figure 9 is a flow diagram of a method for converting a pen stroke to a 

distance field according to the invention; 
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[031] Figure 10 is a flow diagram of a method for converting a two-dimensional 

object to a distance field according to the invention; 

 

[032] Figure 11 is a flow diagram of a method for converting a distance field to 

boundary descriptors according to the invention;  

 

[033] Figure 12 is a flow diagram of a method for animating an object according 

to the invention; and 

 

[034] Figure 13 is a flow diagram of a method for generating a two-dimensional 

distance field within a cell enclosing a corner of a two-dimensional object 

according to the invention. 

 

Detailed Description of the Preferred Embodiment 

 

[035] Distance Field Representation of Glyphs 
 

[036] Our invention represents a closed two-dimensional shape S, such as a glyph, 

a corporate logo, or any digitized representation of an object, as a two-dimensional 

signed distance field D.  For the purpose of our description, we use glyphs. 

 

[037] Informally, the distance field of a glyph measures a minimum distance from 

any point in the field to the edge of the glyph, where the sign of the distance is 

negative if the point is outside the glyph and positive if the point is inside the 

glyph. Points on the edge have a zero distance. 
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[038] Formally, the distance field is a mapping D:ℜ2 → ℜ for all p ∈ ℜ2 such that 

D(p) = sign(p) ⋅ min{||p – q||: for all points q on the zero-valued iso-surface, i.e., 

edge, of S}, sign(p) = {-1 if p is outside S, +1 if p is inside S}, and || ⋅ ||  is the 

Euclidean norm. 

 

[039] Prior art coverage-based rendering methods that use a single discrete sample 

for each pixel can completely miss the glyph even when the sample is arbitrarily 

close to the outline. The rendered glyph has jagged edges and dropout, which are 

both forms of spatial aliasing. If the glyph is animated, then temporal aliasing 

causes flickering outlines and jagged edges that seem to ‘crawl’ during motion. 

Taking additional samples per pixel to produce an antialiased rendition can reduce 

these aliasing effects, but many samples may be required for acceptable results. 

 

[040] In contrast, continuously sampled distance values according to our invention 

indicate a proximity of the glyph, even when the samples are outside the shape. 

 

[041] Furthermore, because the distance field varies smoothly, i.e., it is C0 

continuous, sampled values change slowly as the glyph moves, reducing temporal 

aliasing artifacts. 

 

[042] Distance fields have other advantages. Because they are an implicit 

representation, they share the benefits of implicit functions. In particular, distance 

fields enable an intuitive interface for designing fonts. For example, individual 

components of glyphs such as stems, bars, rounds, and serifs can be designed 

separately. After design, the components can be blended together using implicit 

blending methods to compose different glyphs of the same typeface. 
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[043] Distance fields also have much to offer in the area of kinetic typography or 

animated type because distance fields provide information important for simulating 

interactions between objects. 

 

[044] In a preferred embodiment, we use adaptively sample distance fields, i.e., 

ADFs, see U.S. Patent No. 6,396,492, “Detail-directed hierarchical distance fields,” 

Frisken, Perry, and Jones, incorporated herein by reference. 

 

[045] ADFs are efficient digital representations of distance fields. ADFs use 

detail-directed sampling to reduce the number of samples required to represent the 

field. The samples are stored in a spatial hierarchy of cells, e.g., a quadtree, for 

efficient processing. In addition, ADFs provide a method for reconstructing the 

distance field from the sampled values. 

 

[046] Detail-directed or adaptive sampling samples the distance field according to 

a local variance in the field: more samples are used when the local variance is high, 

and fewer samples are used when the local variance is low. Adaptive sampling 

significantly reduces memory requirements over both regularly sampled distance 

fields, which sample at a uniform rate throughout the field, and 3-color quadtrees, 

which always sample at a maximum rate near edges. 

 

[047] Figures 1A-1B compare the number of cells required for a 3-color quadtree 

for a Times Roman ‘a’ and ‘D’ with the number of cells required for a bi-quadratic 

ADF in Figures 2A-2B of the same accuracy. The number of cells is directly 

related to storage requirements. Both quadtrees have a resolution equivalent to a 

512x512 image of distance values. The 3-color quadtrees for the ‘a’ and the ‘D’ 
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have 17,393 and 20,813 cells respectively, while their corresponding bi-quadratic 

ADFs have 457 and 399 cells. Bi-quadratic ADFs typically require 5-20 times 

fewer cells than the prior art bi-linear representation of Frisken et al., “Adaptively 

Sampled Distance Fields: a General Representation of Shape for Computer 

Graphics,” Proceedings ACM SIGGRAPH 2000, pp. 249-254, 2000. 

 

[048] Bi-Quadratic Reconstruction Method 

 

[049] Frisken et al. use a quadtree for the ADF spatial hierarchy, and reconstruct 

distances and gradients inside each cell from the distances sampled at the four 

corners of each cell via bi-linear interpolation. They suggest that “higher order 

reconstruction methods … might be employed to further increase compression, but 

the numbers already suggest a point of diminishing return for the extra effort”. 

 

[050] However, bi-linear ADFs are inadequate for representing, rendering, editing, 

and animating character glyphs according to the invention. In particular, they 

require too much memory, are too inefficient to process, and the quality of the 

reconstructed field in non-edge cells is insufficient for operations such as dynamic 

simulation. 

 

[051] A “bounded-surface” method can force further subdivision in non-edge cells 

by requiring that non-edge cells within a bounded distance from the surface, i.e., an 

edge, pass an error predicate test, see Perry et al., “Kizamu: A System for 

Sculpting Digital Characters,” Proceedings ACM SIGGRAPH 2001, pp. 47-56, 

2001. Although that reduces the error in the distance field within this bounded 

region, we have found that for bi-linear ADFs that method results in an 

unacceptable increase in the number of cells.  
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[052] To address those limitations, we replace the bi-linear reconstruction method 

with a bi-quadratic reconstruction method. Bi-quadratic ADFs of typical glyphs 

tend to require 5-20 times fewer cells than bi-linear ADFs. Higher reduction in the 

required number of cells occurs when we require an accurate distance field in non-

edge cells for operations such as dynamic simulation and animated type. 

 

[053] This significant memory reduction allows the glyphs required for a typical 

animation to fit in an on-chip cache of modern CPUs. This has a dramatic effect on 

processing times because system memory access is essentially eliminated, easily 

compensating for the additional computation required by the higher order 

reconstruction method. 

 

[054] Figure 3 illustrates a bi-quadratic ADF cell 300 according to our preferred 

embodiment. Each cell in the bi-quadratic ADF contains nine distance values 301. 

A distance and a gradient at a point (x, y) 302 are reconstructed from these nine 

distance values according to Equations 1-3 below. 

 

[055] There are a variety of bi-quadratic reconstruction methods available. We use 

a bivariate interpolating polynomial which guarantees C0 continuity along shared 

edges of neighboring cells of identical size. As with the bi-linear method, 

continuity of the distance field between neighboring cells of different size is 

maintained to a specified tolerance using an error predicate. The error predicate 

controls cell subdivision during ADF generation, see Perry et al., above. 

 

[056] The distance and gradient at the point (x, y) 302, where x and y are 

expressed in cell coordinates, i.e., (x, y) ∈ [0,1] x [0,1], are determined as follows: 
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Let xv1 = x – 0.5 and xv2 = x – 1 

Let yv1 = y – 0.5 and yv2 = y – 1 

Let bx1  = 2xv1 ⋅ xv2, bx2 = – 4x ⋅ xv2, and bx3 =  2x ⋅ xv1 

Let by1 = 2yv1 ⋅ yv2, by2 = – 4y ⋅ yv2, and by3 =  2y ⋅ yv1 

 

dist   =  by1 ⋅ (bx1 ⋅ d1 + bx2 ⋅ d2 + bx3 ⋅ d3) +  

by2 ⋅ (bx1 ⋅ d4 + bx2 ⋅ d5 + bx3 ⋅ d6) +  

by3 ⋅ (bx1 ⋅ d7 + bx2 ⋅ d8 + bx3 ⋅ d9)   (1) 

 

gradx =  – [by1 ⋅ (4x  ⋅ (d1 – 2d2 + d3) – 3d1 – d3 + 4d2) + 

by2 ⋅ (4x  ⋅ (d4 – 2d5 + d6) – 3d4 – d6 + 4d5) + 

by3 ⋅ (4x  ⋅ (d7 – 2d8 + d9) – 3d7 – d9 + 4d8)] (2) 

 

grady = – [(4y – 3) ⋅ (bx1 ⋅ d1 + bx2 ⋅ d2 + bx3 ⋅ d3) – 

(8y – 4) ⋅ (bx1 ⋅ d4 + bx2 ⋅ d5 + bx3 ⋅ d6) + 

(4y – 1) ⋅ (bx1 ⋅ d7 + bx2 ⋅ d8 + bx3 ⋅ d9)].  (3) 

 

[057] Reconstructing a distance using floating point arithmetic can require ~35 

floating-point operations (flops), and reconstructing a gradient using floating point 

arithmetic can require ~70 flops. Because our reconstruction methods do not 

contain branches and the glyphs can reside entirely in an on-chip cache, we can 

further optimize these reconstruction methods by taking advantage of special CPU 

instructions and the deep instruction pipelines of modern CPUs.  Further, we can 

reconstruct a distance and a gradient using fixed-point arithmetic. 
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[058] Compression for Transmission and Storage 

 

[059] Linear Quadtrees 

 

[060] The spatial hierarchy of the ADF quadtree is required for some processing, 

e.g., collision detection, but is unnecessary for others, e.g., cell-based rendering as 

described below. 

 

[061] To provide compression for transmission and storage of ADF glyphs, we use 

a linear quadtree structure, which stores our bi-quadratic ADF as a list of leaf cells. 

The tree structure can be regenerated from the leaf cells as needed.  

 

[062] Each leaf cell in the linear ADF quadtree includes the cell’s x and y 

positions in two bytes each, the cell level in one byte, the distance value at the cell 

center in two bytes, and the eight distance offsets from the center distance value in 

one byte each, for a total of 15 bytes per cell.  

 

[063] Each distance offset is determined by subtracting its corresponding sample 

distance value from the center distance value, scaling by the cell size to reduce 

quantization error, and truncating to eight bits. The two bytes per cell position and 

the one byte for cell level can represent ADFs up to 216 x 216 in resolution. This is 

more than adequate for representing glyphs to be rendered at display screen 

resolutions. 

 

[064] Glyphs can be accurately represented by 16-bit distance values. Encoding 

eight of the distance values as 8-bit distance offsets provides substantial savings 

over storing each of these values in two bytes. Although, in theory, this may lead 
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to some error in the distance field of large cells, we have not observed any visual 

degradation. 

 

[065] A high-resolution glyph typically requires 500-1000 leaf cells. Lossless 

entropy encoding can attain a further 35-50% compression. Consequently, an 

entire typeface of high-resolution ADFs can be represented in 300-500 Kbytes. If 

only body type is required or the target resolution is very coarse, as for cell phones, 

then lower resolution ADFs can be used that require ¼ to ½ as many cells. 

 

[066] These sizes are significantly smaller than grayscale bitmap fonts, which 

require ~ 0.5 Mbytes per typeface for each point size, and are comparable in size to 

well-hinted outline-based fonts. Sizes for TrueType fonts range from 10’s of 

Kbytes to 10’s of Mbytes depending on the number of glyphs and the amount and 

method of hinting. Arial and Times New Roman, two well-hinted fonts from the 

Monotype Corporation, require 266 Kbytes and 316 Kbytes respectively. 

 

[067] Run-time Generation from Outlines 

 

[068] According to our invention, and as described in detail below, ADFs can be 

generated quickly from existing outline or boundary descriptors, e.g., Bezier 

curves, using the tiled generator described by Perry et al. The minimum distance to 

a glyph’s outline or boundary is computed efficiently using Bezier clipping, see 

Sederberg et al., “Geometric Hermite Approximation of Surface Patch Intersection 

Curves,” CAGD, 8(2), pp. 97-114, 1991. 

 

[069] Generation requires 0.04-0.08 seconds per glyph on a 2GHz Pentium IV 

processor. An entire typeface can be generated in about four seconds. Because 
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conventional hints are not needed, the boundary descriptors required to generate 

the ADFs are substantially smaller than their corresponding hinted counterparts.  

 

[070] Therefore, rather than storing ADFs, we can store these minimal outlines 

and generate ADF glyphs dynamically from these outlines on demand. The 

reduced size of these minimal outlines is important for devices with limited 

memory and for applications that transmit glyphs across a bandwidth-limited 

network. 

 

[071] Figure 10 shows a method 1000 for converting a two-dimensional object, 

such as a glyph, to a two-dimensional distance field. The object 1001 is 

represented as a set of boundary descriptors, e.g., splines, and a fill rule, e.g., an 

even-odd rule or a non-zero winding rule. 

 

[072] The set of boundary descriptors are first preprocessed 1010. The 

preprocessing subdivides the boundary descriptors to reduce their spatial extent. 

The boundary descriptors can also be coalesced to reduce the cardinality of the set 

of boundary descriptors. The preprocessing allows us to reduce the number of 

boundary descriptors that need to be queried for each location when determining 

the unsigned distance, as described below.  

 

[073] A spatial hierarchy 1021, e.g., a quadtree, is constructed 1020 from the 

preprocessed set of boundary descriptors 1011. A cache of intersections 1031 is 

initialized 1030. The cache of intersections 1031 stores locations where the 

boundary descriptors intersect a set of lines, e.g., horizontal, vertical, diagonal, 

etc., of the distance field, and the direction of the intersection. This eliminates 
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redundant computations when determining the sign of the unsigned distances. The 

intersections can be sorted by intervals. 

 

[074] The spatial hierarchy 1021 is then queried 1040 at a set of locations to 

determine a set of distances at those locations. The set of distances is used to 

construct a two-dimensional distance field 1041. The querying invokes a distance 

function, e.g., Bezier clipping, at each location to determine an unsigned distance. 

The cache of intersections, the location, and the fill rule are used to determine a 

sign for the distance. 

 

[075] Compression via Component-Based Fonts 

 

[076] Significant compression for Chinese, Japanese, and Korean fonts, which can 

consist of 10,000 or more glyphs, can be achieved by using a component-based 

representation as in Font Fusion. That representation decomposes glyphs into 

common strokes and radicals, i.e., complex shapes common to multiple glyphs, 

stores the strokes and radicals in a font library, and then recombines them in the 

font rendering engine. 

 

[077] Because distance fields are an implicit representation, ADFs can be easily 

combined using blending or CSG operations, and thus are well suited for 

compression via that component-based approach.  

 

[078] Representing Corners in a Two Dimensional Distance Field 

 

[079] Detail-directed sampling with a bilinear or bi-quadratic reconstruction 

method allows ADFs to represent relatively smooth sections of a boundary of a 
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two-dimensional object with a small number of distance values. However, near 

corners, the distance field has a high variance that is not well approximated by 

these reconstruction methods. In order to represent the distance field near corners 

accurately, such ADFs require cells containing corners to be highly subdivided, 

significantly increasing memory requirements. In addition, a maximum subdivision 

level of the ADF, imposed during ADF generation as described in Perry et al., 

limits the accuracy with which corners can be represented using bilinear and bi-

quadratic ADF cells. 

 

[080] To address this problem, our invention provides a method 1300 for 

generating a two-dimensional distance field within a cell enclosing a corner of a 

two-dimensional object, such as a glyph. 

 

[081] The method 1300 determines 1310 an ordered set of boundary descriptors 

1311 from the two-dimensional object and identifies 1320 a corner point 1321 

within a cell from the ordered set of boundary descriptors 1311. The cell is then 

partitioned 1330 into two regions, a first region nearest the corner and a second 

region nearest the boundary of the object. The method 1300 also specifies 1340 a 

reconstruction method and a set of sampled distance values 1371 for reconstructing 

distances within the cell and stores 1380 the corner point 1321, lines delimiting the 

regions, the reconstruction method, and the set of sampled distance values 1371 in 

a memory. 

 

[082] The reconstruction method determines a distance at a point within the cell 

according to which region the point lies in. A distance for a query point in the first 

region is determined as the distance from the query point to the corner point.  

 



CR-1443 
Frisken et al. 

 

 18

[083] For determining distances in the second region, we partition 1350 the 

ordered set of boundary descriptors 1311 into two subsets, one comprising 

boundary descriptors before the corner point 1321 and one comprising boundary 

descriptors after the corner point 1321. Each subset of boundary descriptors is then 

extended 1360 to form an extended curve that partitions the cell into an interior 

and exterior section. For each section, the distance field within the cell can be 

reconstructed from the set of sample distance values 1371 that are determined 1370 

from the corresponding extended curve. A bi-quadratic reconstruction method 

would require that nine distance values be stored for each of the two extended 

curves. 

 

[084] Note that the intersection of the two interior sections forms the corner of the 

object. Hence, distances within the second region can be determined by 

reconstructing a distance to the first interior section and a distance to the second 

interior section and then selecting the minimum of the two determined distances. 

 

[085] The two regions can be specified from two directed lines passing through the 

corner point, each line perpendicular to one of the two subsets of boundary 

descriptors. Each line can be specified by the corner point and the outward facing 

normal of the corresponding subset of boundary descriptors at the corner point. 

When a line is thus defined, we can determine which side of the line a query point 

lies on by determining a cross product of a vector from the query point to the 

corner point and the outward facing normal. Points lying on the exterior side of 

both lines lie in the first region while points lying on the interior side of either line 

lie in the second region.  

 

[086] Font Rendering 
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[087] In today’s font rendering engines, fonts are predominantly represented as 

outlines, which are scaled as needed to match the desired output size. While most 

high-resolution printers use bi-level rendering, modern display devices more 

commonly use grayscale rendering or a combination of grayscale and bi-level 

rendering at small point sizes.  

 

[088] A common approach for rasterizing grayscale glyphs involves scaling and 

hinting their outlines. The scaled and hinted outlines are scan converted to a high-

resolution image, typically four or sixteen times larger than the desired resolution. 

Then, the high-resolution image is down-sampled by applying a filtering method, 

e.g., a box filter, to produce the final grayscale image. 

 

[089] For body type, individual glyphs can be rasterized once and stored in a cache 

as a grayscale bitmap for reuse in a preprocessing step. The need for sub-pixel 

placement of a glyph may require several versions of each glyph to be rasterized. 

Use of a cache for body type permits higher quality rendering with short delays, 

e.g., ½ second, during tasks such as paging through an Adobe Acrobat PDF 

document.  

 

[090] However, type rendered on arbitrary paths and animated type precludes the 

use of a cache and therefore must be generated on demand. Real-time rendering 

requirements force the use of lower resolution filtering, typically four samples per 

pixel and box filtering. This can cause spatial and temporal aliasing. The aliasing 

can be reduced using hinted device fonts residing in system memory. However, 

maintaining real-time frame rates places severe constraints on how hinted device 

fonts can be used, e.g., hinted device fonts cannot be scaled or rotated dynamically. 
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[091] Recent work at Microsoft on ClearType has led to special treatment for LCD 

color displays that contain a repeating pattern of addressable colored sub-pixels, 

i.e., components. Platt, in “Optimal Filtering for Patterned Displays,” IEEE Signal 

Processing Letters, 7(7), pp. 179-180, 2000, describes a set of perceptually optimal 

filters for each color component. In practice, the optimal filters are implemented as 

a set of three displaced box filters, one for each color.  

 

[092] ClearType uses prior art coverage based antialiasing methods to determine 

the intensity of each component of each pixel. In contrast, our distance field based 

method uses the distance field to determine the intensity of each component of 

each pixel, and does so using fewer samples. Our ADF antialiasing method 

described below can replace the box filters to provide better emulation of the 

optimal filters with fewer samples per pixel. 

 

[093] Antialiasing 

 

[094] Understanding appearance artifacts in rendered fonts requires an 

understanding of aliasing. Typically, a pixel is composed of discrete components, 

e.g., a red, green, and blue component in a color printer or display. In a grayscale 

device, the pixel is a single discrete component. Because pixels are discrete, 

rendering to an output device is inherently a sampling process. The sampling rate 

is dependent on the resolution of the device. Unless the sampling rate is at least 

twice the highest (Nyquist) frequency in the source signal, the sampled signal 

exhibits aliasing.  
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[095] Edges, e.g., glyph outlines, have infinite frequency components. Hence, 

edges cannot be represented exactly by sampled data. Inadequate sampling of 

edges results in jaggies, which tend to crawl along the sampled edges in moving 

images. If the source signal also contains a spatial pattern, e.g., the repeated 

vertical stems of an ‘m’ or the single vertical stem of an ‘i’, whose frequency 

components are too high for the sampling rate, then the sampled data can exhibit 

dropout, moiré patterns, and temporal flicker. 

 

[096] To avoid aliasing, the input signal must be pre-filtered to remove frequency 

components above those permitted by the sampling rate. In general, there are two 

approaches to pre-filtering. 

 

[097] The first is known as analytic filtering. It applies some form of spatial 

averaging to a continuous representation of the source signal before sampling. 

Unfortunately, analytic filtering is often not possible, either because the source 

data are not provided as a continuous signal, which is the normal case for image 

processing, or because determining an analytic description of the signal within the 

filter footprint is too complex. This is the case for all but simple geometric shapes 

in computer graphics and certainly the case for spline-based outlines. 

 

[098] The second approach is known as discrete filtering. In that approach, the 

source signal is typically sampled at a higher rate than the target rate to obtain a 

supersampled image. Then, a discrete filter is applied to reduce high frequencies in 

the supersampled image before down-sampling the image to the target rate. The 

discrete approach is referred to as regular supersampling in computer graphics.  
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[099] Various discrete filters can be applied depending on the processing budget, 

hardware considerations, and personal preferences for contrast versus smoothness 

in the output image. The box filter typically used to render type simply replaces a 

rectangular array of supersampled values with their arithmetic average and is 

generally regarded as inferior in the signal processing community. 

 

[0100] In another approach, adaptive supersampling focuses available 

resources for sampling and filtering on areas of the image with higher local 

frequency components. Optimal adaptive sampling can be determined from the 

local variability in the image. However, the usefulness of this technique is limited 

by the need to estimate the local variance of the image, a process that can be 

computationally expensive. 

 

[0101] Moiré patterns, due to inadequate regular sampling of high frequency 

patterns, are particularly objectionable to the human visual system. In general 

image processing, stochastic or jittered sampling has been used to solve this 

problem. With stochastic sampling, the samples are randomly displaced slightly 

from their nominal positions. Stochastic sampling tends to replace moiré pattern 

aliasing with high frequency noise and has been shown to be particularly effective 

in reducing temporal aliasing. 

 

[0102] Rendering with Distance-Based Antialiasing 

 

[0103] The infinite frequency components introduced by edges of a glyph are 

a major contribution to aliasing in prior art font rendering. In contrast, by using 2D 

distance fields to represent 2D objects and then sampling the 2D distance fields 

according to the invention, we avoid such edges because the representation is C0 
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continuous. Instead, a maximum frequency depends on a spatial pattern of the 

glyph itself, e.g., the repeated vertical stems of an ‘m’ or the single vertical stem of 

an ‘i’. 

 

[0104] By representing the glyph by its 2D distance field, we are effectively 

applying an analytic pre-filter to the glyph. Our antialiasing methods for rendering 

distance fields as described below yield an output that is different from the output 

of a conventional analytic pre-filter.  

 

[0105] Antialiasing with Distance Fields 

 

[0106] Figure 4 shows a method 400 for antialiasing, in image-order, an 

object 401, e.g., a glyph, represented 410 as a two-dimensional distance field 411. 

Each pixel 402 can include one or more components 404, typically a red, blue, and 

green component for a ‘RGB’ type of output device. This method can use one or 

more samples for each component 404 of each pixel 402. The method 400 provides 

adaptive distance-based super sampling, distance-based automatic hinting, and 

distance-based grid fitting. The resulting antialiased pixel intensity can be rendered 

on CRT and LCD-like displays as part of an image. The method is particularly 

useful for rendering motion blur. 

 

[0107] A set 403 of sample points 407 in the two-dimensional distance field 

411 representing the object 401 is associated 420 with each component 404 of each 

pixel 402. A distance (D) 405 is determined 430 from the two-dimensional 

distance field 411 and the set of sample points 403. Then, the distance 405 is 

mapped 440 to an antialiased intensity (I) 406 of the component 404 of the pixel 

402. 
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[0108] In the preferred embodiment, the glyph 401 is represented 410 by a 

bi-quadratic ADF 411, as described above. This makes it efficient to apply 

distance-based antialiasing during font rendering. Other representations such as a 

two-dimensional distance map, a two-dimensional distance shell, and a procedural 

distance field can also be used. 

 

[0109] For each component 404 of each pixel 402 in an image, a cell, e.g., a 

leaf cell, containing the component 404 is located using a quadtree traversal 

method described in U.S patent application number 10/209,302, filed on July 31, 

2002 and titled “Method for Traversing Quadtrees, Octrees, and N-Dimensional 

Bi-trees,” incorporated herein by reference in its entirety. Although other traversal 

methods known in the art can be used with our invention, the aforementioned 

method is comparison-free and therefore executes efficiently. The distance at the 

component 404 is reconstructed from the cell’s distance values and mapped 440 to 

the antialiased intensity (I) 406.  

 

[0110] Different mappings can be used, including linear, Gaussian, and 

sigmoidal functions. Selection of the best mapping function is subjective. In one 

embodiment, our mapping is a composition of two functions.  The first function is 

as described above, the second is a contrast enhancement function.  These two 

functions are composed to map 440 the distance field (D) 405 to the antialiased 

intensity (I) 406 of the component 404. 

 

[0111] Figure 5 shows a linear mapping 500 of intensity 501, e.g., [0,1], as a 

function of distance 502. The mapping converts a distance to an antialiased image 

intensity for each component of the pixel. Distances are positive inside the object 
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and negative outside the object. Different cutoff values 503 and 504 affect the edge 

contrast and stroke weight. We achieve good results with outside 503 and inside 

504 filter cutoff values of (-0.75, 0.75) pixels for display type, and (-0.5, 0.625) 

pixels for body type. 

 

[0112] Optimal Distance-Based Adaptive Supersampling 

 

[0113] The above described distance-based antialiasing method reduces 

aliasing due to glyph edges. However, aliasing artifacts still occur when stem 

widths or spacing between glyph components are too small for the display's 

sampling rate. In such cases, we apply distance-based adaptive supersampling as 

described below to further reduce spatial and temporal aliasing. 

 

[0114] In the preferred embodiment, we use bi-quadratic ADFs with our 

novel distance-based adaptive supersampling to provide significant advantages 

over prior art outline-based representations and coverage-based adaptive 

supersampling methods. Because ADFs use detail-directed sampling, regions of 

the distance field with higher local variance are represented by smaller leaf cells. 

Hence, the structure of the ADF quadtree provides the map of local variance 

required to implement optimal distance-based adaptive sampling, overcoming the 

difficulty in the prior art adaptive supersampling antialiasing methods of 

determining the local variance as described above. 

 

[0115] For each component 404 of each pixel 402 in the image, the cell 

containing the component 404 is located, and a set 403 of sample points 407 within 

a filter radius, r, of the component is associated 420 with the pixel component 404. 

The number of sample points 407 per component (spc) depends on the relative size 
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of the cell (cellSize) to r. Sampled distances at the sample points 407 are filtered to 

determine 430 a single weighted average distance 405 that is then mapped 440 to 

an antialiased intensity 406 of the component 404 of the pixel 402. 

 

[0116] Various filters and sampling strategies are possible. In the preferred 

embodiment we use a general form of a Gaussian filter, weighting each distance 

sample by W-12-3(d/r)2

, where d is the distance from the sample point to the 

component of the pixel and W is the sum of the weights used for that component. 

Similar results can be obtained with box filters, cone filters, negative lobe filters, 

and other forms of the Gaussian filter. 

 

[0117] Figure 6A-C shows our sampling strategy. Samples 407 are placed in 

concentric circles 610 near the component 601 for efficient computation of the 

weights and weight sums. We use a filter radius r 602 of 1.3 times the inter-pixel 

spacing and sample with 1 spc when cellSize > r (Fig. 6A), 5 spc when r/2 < 

cellSize ≤ r (Fig. 6B), and 13 spc when cellSize ≤ r/2 (Fig. 6C).  

 

[0118] Rather than concentric circles, the invention can use numerous other 

strategies to associate sample points 407 with pixel components 404. Our method 

is not particularly sensitive to the exact sampling strategy. 

 

[0119] Another adaptive sampling strategy, described below, places sample 

points at the centers of all the cells contained within the filter radius r. This 

strategy has equally good results. 
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[0120] Cell-Based Antialiasing 

 

[0121] The distance field antialiasing methods described above can be 

implemented in software using scanline-based rasterization. Alternatively, distance 

fields partitioned into cells can be antialiased cell-by-cell, i.e., in object-order. 

Cell-based rendering eliminates tree traversal for locating cells containing the 

sample points, eliminates redundant setup for computing distances and gradients 

within a single cell, and reduces repeated retrieval, i.e., memory fetches, of cell 

data.  

 

[0122] In addition, because the cells required for rendering can be 

represented as a sequential block of fixed sized, self-contained units, i.e., distances 

and gradients for points within a cell are determined from the cell’s distance 

values, our cell-based approach is amenable to hardware implementations, 

enabling real-time rendering. 

 

[0123] Figure 7 shows a method 700 for antialiasing an object 701, e.g., a 

glyph, represented 710 as a two-dimensional distance field 711 in object-order. 

The method 700 provides adaptive distance-based super sampling, distance-based 

automatic hinting, and distance-based grid fitting. The resulting antialiased pixel 

intensity can be rendered on CRT and LCD-like displays as part of an image. The 

method is particularly useful for rendering motion blur.  We can use mipmapping 

when the cells of the two-dimensional distance fields 711 are organized in a spatial 

hierarchy to reduce the number of distance samples required. 

 

[0124] The two-dimensional distance field 711 is partitioned into cells 712. 

In a preferred embodiment where we use bi-quadratic, adaptively sampled distance 
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fields, the size of each cell is dependent on a local variance of the two-dimensional 

distance field. Each cell includes a method (M) 713 for reconstructing the two-

dimensional distance field within the cell. A set of cells 721 containing a region 

(dashed line) 722 of the distance field to be rendered is identified 720. 

 

[0125] The region 722 is used to locate 730 a set of pixels 731 associated 

with the region. A set of components 741 for each pixel in the set of pixels 731 is 

specified 740. Then, antialiased intensities 751 are determined for each component 

of each pixel from distances in the set of cells. Here, the distances are 

reconstructed from the set of cells. The distances are then mapped to the 

antialiased intensity, as described above. 

 

[0126] In one embodiment, we can determine the distance by locating a 

single sample point within the set of cells near the component of the pixel and 

reconstructing the distance at the single sample point from the set of cells. In our 

preferred embodiment where we use bi-quadratic adaptively sampled distance 

fields, this approach is augmented with a special treatment of cells smaller than the 

filter radius for adaptive distance-based supersampling. Because small cells occur 

where there is high variance in the distance field, distances in pixels near these 

cells can be pre-filtered before mapping the distances to intensity. 

 

[0127] We initialize a compositing buffer of elements, where each element 

corresponds to a component of each pixel of the set of pixels. Each cell in the set 

of cells can be processed independently. In the preferred embodiment, each 

element consists of a weighted distance and an accumulated weight which are both 

initialized to zero. When a cell is processed, these weighted distances and 

accumulated weights are incremented in the buffer elements that correspond to 
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pixel components which lie either within the cell or within a filter radius of the 

cell’s center. 

 

[0128] After processing all the cells, the weighted distances are normalized 

by the accumulated weight for each component of each pixel to produce the 

distance that is then mapped to the antialiased component intensity. In the 

preferred embodiment, we use the same Gaussian weights and filter radius as 

described above. 

 

[0129] Our cell-based rendering described thus far always processes every 

leaf cell in the set of cells, regardless of the relative sizes of each cell to the filter 

radius. In theory, this provides optimal adaptive distance-based supersampling. In 

practice, the ADF quadtree can be used as a mipmap to reduce the number of cells.  

 

[0130] The ADF quadtree structure allows us to replace small leaf cells with 

their ancestors, effectively truncating the quadtree at some predetermined cell size. 

As long as this cell size is less than or equal to ¼ of the inter-pixel spacing, there is 

no visual degradation in the adaptive distance-based supersampling results. This 

reduces the number of cells to render the region. 
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[0131] Processing Pixel Components 

 

[0132] A pixel comprises one or more components. For example, pixels on a 

typical CRT or LCD color monitor comprise a red, a green, and a blue component. 

In our invention, when the pixel comprises a plurality of components, they can be 

treated independently, as described above, or processed as a single component. 

When the plurality of components is processed as a single component, a color and 

an alpha value of the pixel can be determined from the antialiased intensity of the 

single component.  

 

[0133] There are two reasons to process the plurality of components as a 

single component. First, it reduces rendering times. Second, when the plurality of 

components cannot be addressed individually or when the relative positions of the 

individual components are not known, individual treatment of each component is 

not possible. 

 

[0134] When display devices, such as LCDs, have addressable pixel 

components, it is known in the art that processing the plurality of components 

independently can increase the effective resolution of the device. Our invention 

can exploit this feature of such devices to provide distance-based antialiasing with 

superior quality over the prior art. 

 

[0135] Animating Two-Dimensional Objects 

 

[0136] Figure 12 shows a flow diagram of a method 1200 for animating an 

object 1201 as a sequence of frames according to an animation script 1202. The 

animation script 1202 directs conditions of the object, e.g., the position, size, 
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orientation, and deformation of the object, for each frame in the sequence of 

frames. The object is represented as a two-dimensional distance field.  A pose 1211 

of the object 1201 is updated 1210 for each frame in the sequence of frames 1221 

according to the animation script 1202. The object 1201 is rendered using the 

updated pose 1211 and a distance-based antialiasing rendering method 1212. 

 

[0137] The two-dimensional distance field representing the object 1201 can 

be acquired from a different representation of the object, e.g., an outline 

description of the object or a bitmap description of the object. 

 

[0138] The updating 1210 of the pose 1211 for a particular object 1201 can 

be performed by applying various operations to the object including a rigid body 

transformation, a free-form deformation, a soft-body impact deformation, a level-

set method, a particle simulation, and a change to its rendering attributes. 

 

[0139] When rendering 1220 the object, we associate a set of sample points 

in the two-dimensional distance field representing the object with a component of a 

pixel in a frame in the sequence of frames 1221.  By determining a distance from 

the two-dimensional distance field and the set of sample points, we can map the 

distance to an antialiased intensity of the component of the pixel. 

 

[0140] In a preferred embodiment, we partition the two-dimensional distance 

field representing the object 1201 into cells, each cell including a method for 

reconstructing the two-dimensional distance field within the cell. To render 1220 

in this instance, we identify a set of cells of the two-dimensional distance field 

representing the object 1201 that contains a region of the two-dimensional distance 

field to be rendered and locate a set of pixels associated with the region. A set of 
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components for each pixel in the set of pixels is specified. A distance for each 

component of the pixel is determined from the set of cells and the distance is 

mapped to the antialiased intensity of the component of the pixel to determine an 

antialiased intensity for each component of each pixel in the set of pixels. 

 

[0141] Distance-based Automatic Hinting 

 

[0142] Hinting in standard font representations is a time-consuming manual 

process in which a type designer and hinting specialist generate a set of rules for 

better fitting individual glyphs to the pixel grid. Good hinting produces glyphs at 

small type sizes that are well spaced, have good contrast, and are uniform in 

appearance.  

 

[0143] These rules provide: vertical stems with the same contrast distribution, 

with the left and bottom edges having the sharpest possible contrast; diagonal bars 

and thin, rounded parts of glyphs to have sufficient contrast for transmitting visual 

structure to the eye; and serifs that hold together and provide enough emphasis to 

be captured by the human eye, see Hersch et al., “Perceptually Tuned Generation 

of Grayscale Fonts,” IEEE CG&A, Nov, pp. 78-89, 1995. 

 

[0144] Note that prior art filtering methods produce fuzzy characters and 

assign different contrast profiles to different character parts, thus violating 

important rules of type design. To overcome these limitations, hints are developed 

for each glyph of each font. There are numerous problems with prior art hinting 

methods: they are labor intensive to develop, slow to render, and complex thus 

precluding hardware implementations. 
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[0145] For outline-based fonts, rendering with hints is a three step process. 

First, the glyph’s outlines are scaled and aligned to the pixel grid. Second, the 

outlines are modified to control contrast of stems, bars, and serifs and to increase 

the thickness of very thin sections and arcs. Third, the modified outlines are 

supersampled followed by down-sampling with filtering. 

 

[0146] Although our unhinted distance-based antialiasing rendering methods 

described above compare favorably with prior art font rendering methods that use 

hinting, it is known that perceptual hinting can improve reading comfort at small 

type sizes. 

 

[0147] Therefore, as shown in Figure 8, we exploit the distance field to 

provide distance-based automatic hinting for rendering glyphs at small point sizes. 

The first step 810 in hinting is to scale and align the distance field to the pixel grid. 

This can be done automatically from the given or derived font metrics, e.g., the 

cap-height, the x-height, and the position of the baseline.  

 

[0148] After applying this form of grid fitting, we use the distance field and 

its gradient field to provide perceptual hints.  

 

[0149] In one embodiment, the direction of the gradient of the distance field 

is used to detect 820 pixels on the left and bottom edges of the object. By 

darkening 830 these pixels and lightening 840 pixels on opposite edges, we 

achieve higher contrast on left and bottom edges without changing the apparent 

stroke weight. This can be done by decreasing and increasing the corresponding 

pixel intensities. 
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[0150] In another embodiment, the gradient field is used to provide better 

contrast for diagonal stems and thin arcs. We note that when a pixel is located on 

or near thin regions of the glyph, neighbors on either side of the pixel have 

opposite gradient directions, i.e., their dot products are negative. By detecting 

abrupt changes in gradient directions, we can darken 850 pixels on these thin 

regions.  

 

[0151] These are only two examples of how the distance field can be used to 

provide perceptual hints automatically. The distance field can also be used to 

provide optimal character spacing and uniform stroke weight. 

 

[0152] Generating and Editing Fonts 

 

[0153] There are two basic methods for designing fonts. The first is manual. 

There, glyphs are drawn by hand, digitized, and then outlines are fit to the digitized 

bitmaps. The second is by computer.  

 

[0154] In the latter case, three types of tools are available. Direct visual tools 

can be used for curve manipulation. Procedural design tools construct the shape of 

a glyph by executing the instructions of a procedure. The procedure defines either 

a shape’s outline and fills it, or defines a path stroked by a pen nib with numerous 

attributes, including a geometry and an orientation. Component-based design tools 

allow designers to build basic components such as stems, arcs, and other recurring 

shapes, and then combine the components to generate glyphs. 

 

[0155] We use a sculpting editor to provide stroke-based design. This is the 

2D counterpart to 3D carving as described in U.S. Patent application number 
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09/810,261, “System and Method for Sculpting Digital Models,” filed on March 

16, 2001, incorporated herein by reference. Stroking can be done interactively or it 

can be scripted to emulate programmable design tools. 

 

[0156] Curve-based design, using Bezier curve manipulation tools similar to 

those in Adobe Illustrator can also be used. Curve-based design can be combined 

with methods for converting outlines to distance fields and distance fields to 

outlines to provide a seamless interface between design paradigms. 

 

[0157] Component-based design uses CSG and blending operations on the 

implicit distance field. This allows components to be designed separately and 

combined either during editing or during rendering. 

 

[0158] We also provide a method for automatically generating ADFs from 

analog and digital font masters. 

 

[0159] For component-based design, our font editor provides the ability to 

efficiently reflect and rotate ADFs using quadtree manipulation to model the 

symmetries common in glyphs. Additional features include ADF scaling, 

translation, and operations to combine multiple ADFs, e.g., CSG and blending.  

 

[0160] For stroke-based design, we provide carving tools with a geometric 

profile to emulate pen nibs. The orientation and size of the simulated pen nib can 

change along the stroke to mimic calligraphy.  

 

[0161] Figure 9 shows a method 900 for generating a two-dimensional 

distance field 931 from a pen stroke. We sample a pen state during a pen stroke, 
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the pen state comprising a location of the pen during the stroke. This pen state may 

also include orientation and geometry. From the pen state samples 901, we 

generate 910 an ordered list 911 of pen states along the pen stroke. Then, a set of 

boundary descriptors 921 is generated 920 from the ordered list of pen states. 

Finally, we generate 930 a two-dimensional distance field 931 from the set of 

boundary descriptors 921. 

 

[0162] In the preferred embodiment, the boundary descriptors 921 are curves 

such as cubic Bezier curves. 

 

[0163] In the preferred embodiment, we apply a curve fitting process to fit a 

minimum set of G2 continuous curves to the path of the pen, with user-specified 

accuracy. We also generate two additional ordered lists of offset points from this 

path using the tool size and orientation, and fit curves to these offset points to 

generate the stroke outlines. The outline curves are placed in a spatial hierarchy for 

efficient processing. We generate a two-dimensional ADF from this hierarchy 

using a tiled generator, see U.S. Patent Application No. 09/810,983, filed on March 

16, 2001, and incorporated herein by reference. 

 

[0164] The minimum distance to the outlines is computed efficiently using 

Bezier clipping. Strokes are converted to ADFs without a perceptual delay for the 

user. For curve manipulation, we provide a Bezier curve editor. 

 

[0165] As shown in Figure 11, we also provide the ability to convert distance 

fields to boundary descriptors, e.g., Bezier curves, to provide a seamless interface 

between all three design paradigms.  
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[0166] In the preferred embodiment, we use bi-quadratic ADFs where this 

conversion traverses the leaf cells using the ADF hierarchy for fast neighbor 

searching, generates an ordered list of points along the zero-valued iso-contours of 

the ADF, and then fits curves as described with reference to Figure 11, below, to 

generate the boundary descriptors.  

 

[0167] In contrast with the prior art, where boundary descriptor errors are 

computed from the list of points, we compute the boundary descriptor error 

directly from the distance field. We pay special attention to sharp corners. Our 

approach is fast enough to allow users to seamlessly switch between paradigms 

without any noticeable delay. 

 

[0168] Figure 11 shows a method 1100 for converting a two-dimensional 

distance field 1101 to a set of boundary descriptors 1131. First, we select 1110 an 

iso-contour 1111 of the two-dimensional distance field 1101, e.g., distances with a 

zero value, or some offset.  

 

[0169] Next, we generate 1120 an ordered list of points 1121 from the iso-

contour 1111 and the two-dimensional distance field 1101. In our preferred 

embodiment using bi-quadratic adaptively sampled distance fields, this step visits 

neighboring cells of the adaptively sampled distance field 1101 sequentially using 

a neighbor searching technique. The search technique exploits a spatial hierarchy 

of the adaptively sampled distance field 1101 to efficiently localize a next neighbor 

along the iso-contour 1111. 

 

[0170] In another embodiment, we generate 1120 an ordered list of points 

1121 by selecting boundary cells in the ADF 1101, seeding each boundary cell 
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with a set of ordered points, and moving each point to the iso-contour 1111 of the 

ADF 1101 using a distance field and a gradient field of the ADF 1101. 

 

[0171] Then, we initialize 1130 a set of boundary descriptors 1131 to fit the 

ordered list of points 1121. The boundary descriptors 1131 are initialized 1130 by 

joining adjacent points of the ordered list of points 1121 to form a set of line 

segments that constitute the initial boundary descriptors 1131.   

 

[0172] In another embodiment, we initialize 1130 a set of boundary 

descriptors 1131 by locating corner points, subdividing the ordered list of points 

into segments delimited by the corner points, and determining segment boundary 

descriptors to fit each segment. The union of the segment boundary descriptors 

forms the initial boundary descriptors 1131.  

 

[0173] Corner points can be located by measuring curvature determined from 

the distance field. In the preferred embodiment, where the distance field is a bi-

quadratic ADF, regions of high curvature are represented by small cells in the ADF 

and hence corner points can be located by using ADF cell sizes. 

 

[0174] Once the boundary descriptors 1131 are initialized 1130, the boundary 

descriptors 1131 are updated 1140. The updating 1140 determines an error for each 

boundary descriptor by reconstructing the distance field and measuring the average 

or maximum deviation of the boundary descriptor from the iso-contour. 

 

[0175] The boundary descriptors 1131 are updated 1140 until the error for 

each boundary descriptor is acceptable, or a predetermined amount of time has 

elapsed, or a cardinality of the set of boundary descriptors 1131 is minimal. 



CR-1443 
Frisken et al. 

 

 39

 

[0176] To incorporate the existing legacy of fonts stored in non-digital form, 

i.e., as analog masters, or in digital form as bitmaps, i.e., as digital masters, our 

editing system provides a method for generating ADFs from high-resolution bi-

level bitmaps. 

 

[0177] Analog masters are first scanned to produce bi-level digital masters at 

a resolution at least four times higher than the target ADF resolution, e.g., a 4096 x 

4096 digital master is adequate for today’s display resolutions and display sizes. 

An exact Euclidean distance transform is then applied to the bitmap to generate a 

regularly sampled distance field representing the glyph. 

 

[0178] Then, we generate an ADF from this regularly sampled distance field 

using the tiled generator. Conversion from the bitmap to the ADF requires ~10 

seconds per glyph on a 2GHz Pentium IV processor. 

 

[0179] To convert from existing prior art descriptors of glyphs to distance 

fields where the glyphs are described with a set of boundary descriptors, we apply 

the method described with reference to Figure 10. 

 

[0180] Computational Substrate for Kinetic Typography 

 

[0181] The distance field and the spatial hierarchy attributes of our ADF 

glyph framework can also be used for computer simulation of 2D objects, e.g., 

glyphs, corporate logos, or any 2D shape. For example, both attributes can be used 

in collision detection and avoidance, for computing forces between 

interpenetrating bodies, and for modeling soft body deformation. 
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[0182] Level set methods, which use signed distance fields, can be used to 

model numerous effects such as melting and fluid dynamics. ADFs are a compact 

implicit representation that can be efficiently queried to compute distance values 

and gradients, two important computations required for the methods listed above. 

 

[0183] In contrast, determining distance values and gradients from outlines 

that are moving or deforming is impractical in software for real-time interaction, 

see Hoff et al., “Fast and Simple 2D Geometric Proximity Queries Using Graphics 

Hardware,” Proc. Interactive 3D Graphics'01, 2001. Hoff et al. use graphics 

hardware to generate a regularly sampled 2D distance field on the fly for 

deforming curves approximated by line segments.  

 

[0184] The implicit nature of the distance field permits complex topological 

changes, such as surface offsets that would be difficult to model with outline-based 

fonts. In addition, distance fields can be used to provide non-photorealistic 

rendering of an animated object to add artistic effect. 

 

[0185] Effect of the Invention 

 

[0186] The invention provides a novel framework for representing, rendering, 

editing, and animating character glyphs, corporate logos, or any two-dimensional 

object. In a preferred embodiment, the invention uses two-dimensional bi-quadratic 

ADFs to represent two-dimensional objects. The bi-quadratic reconstruction 

method provides an optimal balance between memory use and computational load.  
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[0187] The invention includes a method for generating a two-dimensional 

distance field within a cell enclosing a corner of a two-dimensional object. This 

method provides a significant reduction in memory requirements and a significant 

improvement in accuracy over the prior art. 

 

[0188] Our distance-based antialiasing rendering methods provide better 

antialiasing using a single unhinted distance sample per pixel than the 

supersampling methods used in the prior art.  

 

[0189] Our distance-based methods exploit the spatial hierarchy of ADFs to 

provide efficient optimal adaptive distance-based supersampling resulting in 

superior spatial and temporal antialiasing. Our methods also provide a 

computational substrate for distance-based automatic hinting, for distance-based 

grid fitting, for unifying three common digital font design paradigms, and for 

generating a variety of special effects for kinetic typography. 

 

[0190] Although the invention has been described by way of examples of 

preferred embodiments, it is to be understood that various other adaptations and 

modifications can be made within the spirit and scope of the invention. Therefore, 

it is the object of the appended claims to cover all such variations and 

modifications as come within the true spirit and scope of the invention. 
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Claims 

 

We claim: 

 

1. A method for converting a two-dimensional distance field to a set of boundary 1 

descriptors, comprising: 2 

selecting an iso-contour of a two-dimensional distance field; 3 

generating an ordered list of points from the iso-contour and the two-4 

dimensional distance field; 5 

initializing a set of boundary descriptors to fit the ordered list of points; and 6 

updating the set of boundary descriptors, the updating further comprising: 7 

determining an error for each boundary descriptor in the set of 8 

boundary descriptors using the two-dimensional distance field; and 9 

refining the set of boundary descriptors based on the error for each 10 

boundary descriptor to update the set of boundary descriptors. 11 

 

2. The method of claim 1 wherein the set of boundary descriptors is a set of 1 

splines. 2 

 

3. The method of claim 1 wherein the two-dimensional distance field is an 1 

adaptively sampled distance field. 2 

 

4. The method of claim 3 wherein the generating of the ordered list of points visits 1 

neighboring cells of the adaptively sampled distance field sequentially using a 2 

neighbor searching technique that exploits a spatial hierarchy of the adaptively 3 

sampled distance field to efficiently localize a next neighbor along the iso-contour. 4 
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5. The method of claim 3 wherein the generating of the ordered list of points 1 

further comprises: 2 

selecting a set of cells in the adaptively sampled distance field; 3 

seeding each cell of the set of cells with a set of ordered points, a union of 4 

the sets of ordered points forming the ordered list of points; and 5 

moving each point in the ordered list of points to the iso-contour of the 6 

adaptively sampled distance field using a distance field and a gradient field of the 7 

adaptively sampled distance field. 8 

 

6. The method of claim 5 wherein each cell of the set of cells is a leaf cell of the 1 

adaptively sampled distance field containing the iso-contour. 2 

 

7. The method of claim 5 wherein the initializing of the set of boundary descriptors 1 

further comprises:  2 

joining adjacent points of the ordered list of points to form a set of line 3 

segments; and  4 

using the set of line segments to initialize the set of boundary descriptors. 5 

 

8. The method of claim 1 wherein the initializing of the set of boundary descriptors 1 

further comprises: 2 

locating corner points; 3 

subdividing the ordered list of points into segments delimited by the corner 4 

points; and  5 

determining segment boundary descriptors to fit each segment, the union of 6 

the segment boundary descriptors initializing the set of boundary descriptors. 7 
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9. The method of claim 8 wherein the locating of the corner points uses curvature 1 

determined from the two-dimensional distance field. 2 

 

10. The method of claim 8 wherein the two-dimensional distance field is an 1 

adaptively sampled distance field and the locating of the corner points uses sizes of 2 

cells in the adaptively sampled distance field. 3 

 

11. The method of claim 8 wherein the locating of the corner points determines 1 

positions where a direction derived from adjacent points in the ordered list of 2 

points changes abruptly. 3 

 

12. The method of claim 1 wherein the determining of the error for a boundary 1 

descriptor comprises reconstructing the two-dimensional distance field at a set of 2 

locations along the boundary descriptor. 3 

 

13. The method of claim 1 wherein the error for a boundary descriptor is 1 

determined from a deviation of the boundary descriptor from the iso-contour. 2 

 

14. The method of claim 13 where the deviation is determined by reconstructing 1 

the two-dimensional distance field at a set of locations along the boundary 2 

descriptor. 3 

 

15. The method of claim 13 wherein the deviation is a maximum deviation along 1 

the boundary descriptor. 2 

 

16. The method of claim 13 wherein the deviation is an average deviation along the 1 

boundary descriptor. 2 



CR-1443 
Frisken et al. 

 

 45

 

17. The method of claim 1 wherein the refining subdivides each boundary 1 

descriptor in the set of boundary descriptors when the error is greater than an error 2 

threshold. 3 

 

18. The method of claim 1 wherein the refining coalesces adjacent boundary 1 

descriptors in the set of boundary descriptors, the coalesced boundary descriptors 2 

having an error below an error threshold. 3 

 

19. The method of claim 17 wherein the subdivision of a boundary descriptor 1 

occurs at a location along the boundary descriptor where a deviation of the 2 

boundary descriptor from the iso-contour is maximal. 3 

 

20. The method of claim 1 wherein a subset of the ordered list of points is 1 

associated with each boundary descriptor. 2 

 

21. The method of claim 17 wherein the refining of a particular boundary 1 

descriptor further comprises subdividing a subset of the ordered list of points 2 

associated with the boundary descriptor. 3 

 

22. The method of claim 18 wherein the coalescing of adjacent boundary 1 

descriptors further comprises coalescing subsets of the ordered list of points 2 

associated with the adjacent boundary descriptors. 3 

 

23. The method of claim 1 wherein the updating is terminated when no element of 1 

the set of boundary descriptors requires further refinement. 2 
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24. The method of claim 1 wherein the updating is terminated when a time 1 

threshold has elapsed. 2 

 

25. The method of claim 1 wherein the updating is terminated when a cardinality 1 

of the set of boundary descriptors is minimal.2 
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Abstract of the Disclosure 

 

A method converts a two-dimensional distance field to a set of boundary 

descriptors. An iso-contour of the two-dimensional distance field is selected. An 

ordered list of points is generated from the iso-contour and the two-dimensional 

distance field. A set of boundary descriptors is initialized to fit the ordered list of 

points. The set of boundary descriptors is updated by determining an error for each 

boundary descriptor using the two-dimensional distance field and refining the set 

of boundary descriptors based on the error for each boundary descriptor. 
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