
Author's personal copy

Computer-Aided Design 44 (2012) 522–536

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

High accuracy NC milling simulation using composite adaptively sampled
distance fields
Alan Sullivan ∗, Huseyin Erdim, Ronald N. Perry, Sarah F. Frisken 1

Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA

a r t i c l e i n f o

Article history:
Received 5 August 2011
Accepted 11 February 2012

Keywords:
Distance fields
NC milling simulation
ADF
Swept volumes

a b s t r a c t

We describe a new approach to shape representation called a composite adaptively sampled distance field
(composite ADF) and describe its application to NC milling simulation. In a composite ADF each shape
is represented by an analytic or procedural signed Euclidean distance field and the milled workpiece is
given as the Boolean difference between distance fields representing the original workpiece volume and
distance fields representing the volumes of the milling tool swept along the prescribed milling path. The
computation of distance field of the swept volume of a milling tool is handled by an inverted trajectory
approach where the problem is solved in tool coordinate frame instead of a world coordinate frame.
An octree bounding volume hierarchy is used to sample the distance functions and provides spatial
localization of geometric operations thereby dramatically increasing the speed of the system. The new
method enables very fast simulation, especially of free-form surfaces, with accuracy better than 1micron,
and low memory requirements. We describe an implementation of 3 and 5-axis milling simulation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Machining is defined as the process of removing material from
a workpiece in the form of chips. Machining processes, such as
milling, turning and drilling, are very importantmanufacturing op-
erations with a wide range of applications including prototyping,
low volume manufacturing, fabrication of molds and dies, and the
finishing of parts fabricated by casting or stamping.

During NC milling a computer controlled rotary cutting tool
follows a prescribed path to cut a workpiece. The essential goal of
NCmilling simulation and verification ismathematically removing
the swept volume generated by each cutter movement along the
NC trajectory thus obtaining a model of the in-process and final
machined surface.

Simulation of NC milling can be used for optimization of the
cutting conditions, tool path planning, error analysis, collision
avoidance and modeling of cutting forces. NC milling simulation
seeks to avoid the cost and delays associated with fabrication
of defective parts. Fabrication mistakes prior to actual milling
process can be corrected by quickly and accurately simulating
the process. However, to be useful, the simulation has to be
much faster than the real fabrication time and has to provide

∗ Corresponding author. Tel.: +1 617 621 7596; fax: +1 617 621 7550.
E-mail addresses: sullivan@merl.com (A. Sullivan), erdim@merl.com

(H. Erdim), perry@merl.com (R.N. Perry), sfrisken@gmail.com (S.F. Frisken).
1 61 Solutions Inc, USA.

sufficient accuracy so that small defects can be detected. Overall,
NC simulation has become an important step in CAM (Computer
Aided Manufacturing) systems.

2. Related work

Numerically controlled (NC) milling simulation systems have
made great progress after several years of development. The basic
idea is to mathematically remove the volume swept by cutter
movements along the NC trajectory from the model of the raw
stock, and thus obtaining a model of the in-process or final
machined workpiece.

In NC machining, a swept volume is represented by a
set of points on the moving cutter as it moves over the
machined surface. Solid sweeping is an essential concept in many
applications involving moving shapes, including motion planning,
collision detection, ergonomics, robot workspace analysis and NC
machining, and it is considered to be one of the fundamental
solid representation schemes in geometric and solidmodeling. The
mathematical formulation of the swept volume computation has
been investigated using singularity theory [1], envelope theory
[2–4], Jacobian rank deficiency method [5,6], sweep differential
equation (SDE) [7,8], Minkowski sums [9], implicit modeling
[10,11], error bounded dual-contouring like approach [12] and
kinematics [13]. Many approaches to computing the boundary
of swept volumes have been published in the literature and an
extensive review appears in [14].

NC simulationmethods can be categorized into three major ap-
proaches: solid modeling, spatial partitioning and discrete vectors.

0010-4485/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.02.002

Author's personal copy

A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536 523

Solid modeling-based simulators use a boundary representation
(B-rep) to represent the milled workpiece and explicitly perform
Boolean subtraction operations between a solidmodel of thework-
piece and the volume swept by a cutter as it moves between two
adjacent tool positions. Although solid modeling can provide ac-
curate verification and error assessment, the computation cost is
known to increase rapidly as the number of cutter movements in-
creases. Solid modeling methods have been used for simple tool
paths in 2.5D end-milling [15], for free-form surfaces in 3-axis ball-
end milling [16–18], and as well as for 5-axis flank milling with
tapered ball-end mills [19].

B-rep based milling simulators are theoretically capable of
providing a highly accurate simulation of machining, but suffer
from high computational cost in terms of time, data storage, and
complexity. A boundary representation consists of interconnected
lists of vertices, edges, and faces. Therefore, all computations
on boundary representations involve traversing these lists (also
known as boundary traversal). The amount of memory required
to represent new vertices, edges, faces and all the connectivity
information between them grows with the number of tool
motions. The essential requirement is that a B-rep must specify
unambiguously the boundary of a bounded regular solid in E3 [20].
Section 7 will give a detailed comparison of our approach with a
solid modeler based simulation.

Another approach to NCmilling simulation, cell decomposition,
uses spatial partitioning to represent the workpiece and cutter.
In this approach, the workpiece, tool and swept volume are
decomposed into simple geometric elements, or cells, using spatial
partitioning approaches such as ray casting [2,21], Z-buffer [22],
G-buffer [23], dexel [24–26], Graf-tree [27], voxel and octree, etc.
These approaches approximate the swept volume generated by
each tool motion to a user defined accuracy that depends on
the size and shape of the simple geometric element. Although
these methods are computationally efficient, the results are
view dependent, and changes in viewing direction require the
simulation to be run again. Furthermore, in order to increase the
accuracy of cell decomposition in the model, the sizes of the cells
have to be reduced. As a result, these decompositions consume a
considerable amount of memory and time.

The third approach, called the point vector method, approxi-
mates the machined surface by a discrete set of points and the
vectors originating from these points. The cutting is simulated by
calculating the intersection of these vectors with the cutter swept
volumes [28–30]. The vectors are clipped if the tool passes at that
location. The point vectormethod is one of themost efficientmeth-
ods in NC simulation. It has the advantage of being able to detect
regions where undercutting or overcutting occurred. However this
method is not suitable when the surface normal vectors change
abruptly which limits the applicability of the method to general
cutting programs. In addition to thesemethods, Graphical process-
ing units (GPUs) have advanced greatly over the last few years.
They gain orders of magnitude of speed over existing solutions due
to their processing power such as dexel representation for 3-axis
milling [31] and triple dexel representation for 5-axis milling [32].

2.1. Goals and outline

Free-form surfaces are extensively used in the die-mold,
aerospace and automotive industries. These surfaces are often used
as functional parts and require highly accurate surface finishing. In
die-mold applications, a tool path can contain on the order of 106

tool motions making the computational cost for characterizing the
swept volumes of all tool movements very expensive. The existing
simulation methods are slow and require too much memory for
practical use. In this paper, we propose a new approach to NC
milling simulation that can rapidly generate a highly accurate

representation of the milled workpiece. This newmethod consists
of three elements that help to overcome the shortcomings of the
previous methods:

1. Each surface in the simulation is implicitly represented as the
zero level iso-surface of an analytically or procedurally defined
signed Euclidean distance field.

2. Themachined surface of theworkpiece is implicitly represented
as the Boolean difference between distances fields representing
the original workpiece and the distance fields of volumes swept
by the tool.

3. An octree bounding volume hierarchy is used to sample
the distance field functions to obtain spatial localization of
geometric operations.

We show that the result is a high speed milling simulation system
with sub-micron accuracy and a small memory footprint.

Our method is based on a new approach to computing the
distance field of a swept tool, and its application to 3 and
5-axis NC milling simulation. We formulate our approach in
Sections 3–5 outline the procedure of the proposed method.
Section 6 gives details about the rendering approach. We illustrate
different examples for different tools in Section 7. Finally,
Section 8 summarizes the contributions of this paper and explores
the extension of our approach to distance field rendering and
generation using GPU.

3. Distance fields

A distance field is a scalar field that specifies the minimum
distance to an object from a point in space. A distance field is an
effective representation of shape, and is a special case of shape
modeling with implicit functions [33]. Unlike the more common
boundary representation (B-rep), the distance field of an object
is defined everywhere in space. Given a signed distance field,
several properties can be derived including the boundary of an
object. The zero value iso-surface can be implicitly defined as the
set of points where the distance field is zero. Different forms of
distance functions have various uses in Computer Aided Design
and Manufacturing (CAD/CAM), computer graphics, and in other
applications, such as collision detection, surface offsetting, path
planning, rendering and shape morphing.

Let S be a closed 3-dimensional C0 manifold embedded in
E3 and denote the boundary of S as ∂S. We define the signed
Euclidean distance function of S, dS(p), as the function that yields
the Euclidean distance from a point p to the closest point in the
boundary of the set ∂S,

dS(p) =

 inf
∀q∈∂S
∥p− q∥2 p ∈ S

− inf
∀q∈∂S
∥p− q∥2 p ∉ S (1)

where ∥ · · · ∥2 is the 2-norm or Euclidean norm. Alternatively we
can define S from its distance function

Sd = {p ∈ E3
: d(p) ≥ 0}. (2)

Note that we define positive distances as inside the object
boundary. Since Sd includes its boundary, the complement of Sd, Scd ,
is an open set which is not a permissible solid.

The signed distance function returns the distance to the
boundary ∂S, and, as indicated in Eq. (1), the sign of the distance
field distinguishes whether the point is inside or outside of ∂S. The
signed Euclidean distance field has the property that the gradient
of the distance field |∇dS(p)| = 1 everywhere for objects with
smooth boundary except on the medial axis where it is undefined,
and for p ∈ ∂S the gradient is the surface normal vector, while
elsewhere it points in the direction of the surface. We can define

Author's personal copy

524 A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536

Fig. 1. Calculation of the removed volume andmilled workpiece from a single tool
motion in NC milling simulation using regularized Boolean operations.

the foot point of the point p as the orthogonal projection of the
point onto the surface,

pfoot = p− dS(p)∇dS(p). (3)

The ability to directly find a point on the surface is a very useful
property as shall be shown.

3.1. Distance fields of swept tools

In this section, we develop a mathematical formulation for
computing the swept volumes of general surfaces of revolution in
E3. In this paper, our focus is on NC machining and thus surfaces
of revolution. In conventional NC machine tools, the path of a
milling tool is controlled by G-code instructions which represent
a set of tool motions for cutting the workpiece. In our method,
the in-process and final workpiece is obtained by performing a
Boolean difference operation to remove the volume swept by the
cutter following the tool-path. Fig. 1 illustrates the process. A
cylindrically symmetric milling tool at initial position Si moves to
final position Si+1 along tool path Mi and removes any part of the
initial workpiece Wi within the swept volume SVi. The Boolean
intersection of the swept volume of the tool with the workpiece
is the removed volume RVi associated with this tool sweep, and
the Boolean difference is the updated workpiece Wi+1. The final
finished workpiece is shown byW .

Sweeping an arbitrary set of points S along a motion M in a
d-dimensional Euclidean space Ed is usually formulated as an
infinite union operation expressed formally as

sweep(S,M) =

q∈M

Sq, (4)

where Sq denotes the set S positioned according to a configuration
q of motion M(t), and t ∈ [0, 1] is the time-like parameter
of the motion within a normalized interval. In this paper we
focus on the case where set S is a 3-dimensional cylindrically
symmetric tool moving in a 3-dimensional Euclidean space E3. We
assume that motion M is a one parameter family of rigid body
transformations M(t), with t ∈ [0, 1]. Rigid body transformations
in E3 can be represented using homogeneous coordinates by (4×
4) matrices, where the transformations will be defined in terms
of time dependent 3-dimensional translation vector, T (t) and a
time dependent orthogonal 3-dimensional rotation matrix, R(t) as
shown.

M(t) =

R(t) T (t)
0 · · · 0 1

. (5)

For any closed cylindrically symmetric set S moving along
a rigid body motion M(t) as seen in Fig. 2(a), the distance
from a point P in the space to the boundary of swept volume
sweep(S,M(t)) is defined as

dist(P, sweep(S,M(t))) = inf
q∈∂sweep(S,M(t))

∥q− P∥. (6)

From Eq. (6) we see that finding the distance field of a swept
volume requires computing the envelopes of the swept volume.
This procedure is easy for simple tools such as ball-end mill tool
moving along linear paths, however it is much more complicated
for general tools and motions.

The first reason for the difficulty is the changing geometry of
grazing points. The grazing points are the subset of the boundary
points of the swept object that are tangent to the motion at any
time during the motion. For general motions, the grazing points
are not fixed on the moving object, but change with time. [34,35]
presented closed-form solutions of the swept profile of the most
commonly used cutters for the simulation of 5-axis machining.
Most of the methods in the literature sample the sweeping
trajectory and compute the grazing points for the intermediate
configurations by using numerical or analyticalmethods. However,
this sampling approach is problematic; the general boundary of
a swept volume can generate self-intersections and other high
frequency features, and the sampling may miss small topological
features leading to surface discontinuity in the constructed swept
volume. An alternative way of finding the grazing points is to use
screw motions [36,37], where the grazing points are identical for
all instances. The instantaneous screw axis, which iswidely used in
spatial kinematic analysis, can be used to solve the grazing points
of a swept volume.

The second reason for the difficulty is in the approximation of
the boundary of a swept volume from grazing points. Although the
grazing points can be found analytically for limited motions and
tools, the corresponding grazing points on adjacent tool positions
are interpolated by a piecewise linear or higher order surfaces
such as NURBS. The envelope surface cannot be represented by
simple surfaces, however an approximation algorithm is applied
to generate an envelope surface such as skinned surface from a set
of profiles. This process is not reliable, because the grazing points
for the consecutive tool instances may be drastically different, and
the matching between them could not be found easily.

All points of S will move through space along a trajectory
T determined by transformation M(t) in an absolute coordinate
system. The trajectory of a point Q of S can be written as

TQ = {Qm
| Q ∈ S, m ∈ M}. (7)

Clearly, curve TQ contains all points of the space that will be
occupied by point Q at some time during the motion. However,
when observed from a moving coordinate system rigidly attached
to the moving set S, a point P appears to describe a different
trajectory denoted by T̂P . This inverted trajectory can be written as

T̂P = {Pb
| b ∈ M̂} (8)

where M̂ is the inverted motion, i.e., M̂(t) is the inverse ofM(t) for
every value of t [38].

In order to overcome the difficulty of computing grazing points,
we instead determine the distance field of a swept volume by
looking at the system from a moving coordinate system rigidly
attached to the moving set S.

For the same problem described by Eq. (6), consider an inverted
trajectory curve T̂P of test point P and a moving set S in three
dimensional space. We define the minimum distance function
from a point y on the boundary of S to the point z on inverted
trajectory T̂P .

dist(S, T̂P) = min
y∈∂S,z∈T̂P

∥y− z∥. (9)

Author's personal copy

A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536 525

a

b

Fig. 2. The sweep of a cylindrical symmetric set S according to a linear motion;
(a) The distance between the point and swept set, (b) The inverted trajectory for
point P and the distance with the initial set.

If the maximum distance is reached at two points y and z, then
the line spanned by y and z is normal to both sets. By using this
inverted trajectory approach, the same distance can be computed
without considering the envelopes of the swept set as shown

dist(P, sweep(S,M(t))) = dist(S, T̂P). (10)

The minimum distance can be computed by using an analytical
or numerical search methods. The proposed method can be
generalized to APT (automatically programmed tools) cutters with
several different distance formulas, such as tapered ball-end, fillet-
end and tapered fillet-end mills. According to the automatically
programmed tools definition, the geometry of mill cutters can be
described by certain major parameters.

In NC milling, there are generally two types of motions;
3-axis and 5-axis motions. In 3-axis milling case, the tool axis
is always constant in one direction, translates in space and
only rotates around its own axis, however, in 5-axis milling
case, addition of two rotational axes allow to machine variety
of different workpieces and motions. 5-axis capability enables
the cutting tool to reach workpiece from many sides and
many angles. For 5-axis NC machine tools, besides the three
translationalmovements, the tool spindle can also be rotated along
the two of three axes. Complicated tool motions are achieved
by simultaneously performing these two kinds of motions,
comprising three translations and two rotation motions around
the two of them. For the most common tool shapes (ball-end, flat-
end, taper-end mill, taper ball-end mill, conical-end mill etc.) and

a

b

Fig. 3. The sweep of a cylindrical symmetric set S according to an arc motion;
(a) The distance between the point and swept set, (b) The inverted trajectory for
point P and the distance with the initial set.

motion types (linear and circular arc), the distance field calculation
can be performed analytically. However, for more complex tools
such as 5-axis motions, a numerical approach is used where the
minimum distance along the inverted trajectory is determined by
conventional optimization algorithms such as Newton’s method.
Direct analytical solution of the minimum distance function is
rather difficult; hence it is solved by employing an iterative
numerical method. In the case of linear tool motion the inverted
trajectory is a line segment as seen in Fig. 2, for the case of circular
arc path, the inverted trajectory is an arc as seen in Fig. 3, and
for the case of 5-axis tool path, the inverted trajectory could be
represented by a third order spline curve as seen in Fig. 4.

3.2. Modeling of machined workpiece

Expressing the distance field of a complex object, such as a
machined workpiece, in an analytic form is usually impossible.
Therefore, a discrete representation is often used wherein the
distance field is sampled at a set of discrete locations [39].
Regularly sampled distance fields have drawbacks because of
the need to trade off size and resolution. In order to overcome
these limitations, ADFs (adaptively sampled distance fields) have
been proposed [40] to adaptively sample the distance field at the
vertices of an octree bounding volume hierarchy. In this approach
octree cells are sub-divided when the reconstructed surface error
exceeds a predefined tolerance. ADFs are a practical representation
of solids that provide high quality surfaces, efficient processing,
and a reasonable memory footprint in order to minimize number
of distance evaluations and reduce storage requirements.

In standard Constructive Solid Geometry (CSG), basic Boolean
operations such as union, intersection and difference (akin to

Author's personal copy

526 A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536

a

b

Fig. 4. The sweep of a cylindrical symmetric set S according to a 5-axis motion;
(a) The distance between the point and swept set, (b) The inverted trajectory for
point P and the distance with the initial set.

Table 1
CSG Operations on distance fields.

Operation Symbolic representation Combined distance

Intersection dist(A ∩ B) min(dist(A), dist(B))
Union dist(A ∪ B) max(dist(A), dist(B))
Difference dist(A− B) min(dist(A),−dist(B))

set-theoretic operations) on solid objects can be used to define
complex shapes and features, as well as to model and simulate
manufacturing processes. This concept can be extended to solids
represented by scalar distance fields [41]. In order to construct a
Boolean expression for distance fields which is strictly Euclidean,
additional halfspaces need to be introduced at the edges and
vertices where two sets meet. However, current algorithms are
unable to robustly evaluate the intersections or handle degenerate
cases for general models [42]. As a result, our goal is to
develop good approximation method. Instead of imposing strictly
Euclidean distance values outside or inside the solid, we perform
Boolean combinations simply by using min() and max() operators
as shown in Table 1. Although Boolean combinations of Euclidean
distance fields using these operators is no longer strictly Euclidean,
the combined distances are Euclidean everywhere on the boundary
of surface which is fine to represent the surface accurately.

The octree-based ADF representation used in [43] is well
suited for modeling a shape edited using CSG. The CSG operations
in Table 1 can be used to modify the sampled values in an
ADF depending on the distance field of a milling tool. As the
simulated tool moves along the milling path, the tool’s distance
field is sampled at the octree cell vertices and combined with
the existing samples using the min() operator. The distance field
is then reconstructed from the modified samples at non-vertex
positions using trilinear reconstruction and compared to the exact

Fig. 5. The flow chart of NC milling simulation system.

values obtained by evaluating the tool distance function. If the
reconstruction error exceeds the predefined threshold, and the cell
level is less than a predefined maximum, the cell is subdivided
(error-based subdivision).

Although conventional ADFs provide an efficient and reason-
ably accurate representation of a machined part, they are inade-
quate for high accuracy NC milling where high simulation speeds
and extremely high accuracy are required. To reconstruct a 4 mm
diameter spherical surface from distance field samples using tri-
linear interpolation with an error of 1 µm requires a cell size less
than 91 µm. However, to reconstruct edge details such as the cusp
between adjacent sweeps of a 4 mm diameter ball end mill can re-
quire cells smaller than 24µm. For any reasonably largeworkpiece
such small cells result in very deep octrees with correspondingly
large memory and processing requirements.

The flow diagram of creating the machine workpiece is given in
Fig. 5. This diagram basically illustrates the sequence of operations
to be performed to get the solution of a machined surface
representation and cutter locations.

3.3. Composite ADFs

In this work we introduce a new ADF representation which we
call a composite ADF and describe its application to NC milling
simulation. Unlike conventional ADFs, a composite ADF samples
the distance field functions within octree cells to determine
the minimal subset of functions whose boundaries, i.e., d =
0 isosurfaces, contributes to the boundary of the workpiece,
the composite boundary, within a cell. Additionally, we form
an implicit, rather than explicit, combination of the individual
distance fields. We determine the value of the composite distance
field at a point by computing the value at the point for all of the
distance fields within a cell and then combine the values using the
CSG relationships of their distance fields as given in Table 1. As
mentioned above, the resulting composite distance field value is
only exact at the composite boundary, elsewhere it is approximate.
This is acceptable since the goal of this work is a highly accurate
representation of the composite boundary of the workpiece.

Author's personal copy

A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536 527

Stated simply, the composite ADF representation consists of an
octree hierarchy of cells that are either interior to, exterior to or
contain the composite boundary. Each boundary leaf cell stores an
array of references to distance fields of the swept volumes of the
milling tools that contribute to the composite boundary within the
cell. Since a given distance field may contribute to the composite
boundary within many cells we keep the parameters needed to
compute the distance fields in a common table and boundary
cells contain only references to entries in that table. We employ
locational codes [44] to efficiently perform a number of important
functions of octrees, such as point location (identifying the cell that
contains a point), or neighbor finding.

di(p) = 0 dj(p) > 0
{i | i ∈ I and I ⊆ [1, . . . ,N]}
{j | j ∈ [1, . . . ,N] and j ∉ I}

(11)

where N is the number of distance fields. In other words a point
p is on the boundary of the composite distance field iff it is on the
boundary of one or more distance fields and inside the rest of the
distance fields.

4. Detail directed adaptive subdivision

Milling programs for free-form surfaces typically consist of a
very large number (up to millions) of milling instructions that
are each associated with a distinct distance field. In order to
vastly improve geometric operations such as editing theworkpiece
and rendering, we use an octree bounding volume hierarchy
to adaptively spatially localize the distance fields that form
the boundary of the workpiece surface. By using an octree to
spatially localize the distance fields forming the composite surface
geometric operations can be performed within octree boundary
cells that contain only a small fraction of the total number
of distance fields in the surface representation. This provides
substantial performance gains resulting in a practical and very
accurate simulation system.

The degree of octree subdivision is determined by the local
complexity of the composite boundary as determined by the local
density of distance field boundary regions. Octree cell subdivision
in composite ADFs is driven by a count based subdivision rule: a
cell is subdivided if it contains more than a specified maximum
number of distance field references and its level is less than the
maximum octree depth. To avoid the loss of information we allow
the smallest octree cells to contain references to an arbitrary
number of distance fields. As will be explained in greater detail
in Section 7, the performance of the system has only a weak
dependency on the maximum number of distance fields per cell.
We have found that using a maximum number of 4 distance fields
per cell yields good results.

Fig. 6 shows an simple example where a rectangular solid
is formed by the intersection of 6 planar distance fields whose
boundaries are shown in light blue. Each cell is limited in this
example to containing maximum 2 distance fields which causes
root cell to be subdivided into 8 children. The top surface has been
milled by 3 horizontal sweeps of a ball end mill shown in red, dark
blue and green driving further subdivision of some boundary leaf
cells.

5. Generation and update of CADFs

To perform milling simulation using the composite ADF
representation we first construct a composite ADF of the initial
workpiece, usually from simple primitives such as planes or
cylinders. Then for each tool motion, we determine from its
bounding box a sub-tree of the octree whose cells are potentially

altered by the tool. For each cell in the sub-tree we first perform
cell/boundary intersection testing, where it is determinedwhether
the cell contains a portion of the boundary of the swept tool’s
distance function, or is entirely outside the boundary. Any cell
that is entirely outside of the boundary of the shape instance’s
distance function is also outside of the composite surface and so
the cell’s type is changed to exterior leaf cell and any data or
children it contains are freed. If the cell is not entirely outside of the
boundary of the swept tool and the cell is an intermediate cell, then
cell/boundary intersection testing recurses to the cell’s children.

For each interior or boundary leaf cell that contains a portion
of the boundary of the swept tool, a cell culling operation is
performed. During cell culling the set of distance fields that have a
portion of their boundarieswithin the cell is refined to theminimal
set of distance fields that have a portion of their boundary that is
part of the composite boundary. References to any distance field
that does not contribute to the composite boundary within the cell
are removed from the cell’s data structure. This may include the
new distance field as well as any or all of the previous distance
fields. A cell whose minimal set is the ∅ set is an exterior cell, and
so its type is changed and any data it contains are freed.

In the third step, once theminimal set of distance fields is found
a cell will be subdivided if its level is greater than the maximum
depth of the octree and the number of distance field references
in its data structure are greater than a maximum number, e.g. 4
surfaces. Each new child cell is edited by the distance fields of
its parent cell using the same process as just described. We now
describe both of these operations in greater detail.

5.1. Cell/boundary intersection testing

In order for a distance field to contribute to the composite
boundary of the workpiece within a cell C it is a necessary, but
not sufficient, condition that some portion of its boundary enters
the cell. Therefore a cell/boundary intersection test is performed in
three phases: a coarse test, a vertex test and then a face/edge test.
Formally we seek to determine

Dc ⊆ D s.t.∀d ∈ Dc : C ∩ ∂Sd ≠ ∅ (12)

where D is the set of all distance fields.
The initial coarse intersection test is performed by computing

the value of the distance field at the cell center d(pc) and
comparing it to the cell size, cs. If d(pc) < −cs, the cell is entirely
outside of the swept volume and unaffected by it. If d(pc) > cs,
the cell is entirely within the swept volume of the tool, and hence
the cell is completely outside to the workpiece surface. Therefore,
the cell’s type is changed to exterior and references to any distance
fields within it are deleted. If the cell’s type is intermediate, then
its children are recursively deleted before the cell is changed to
exterior.

If −cs ≤ d(pc) ≤ cs, cell/boundary intersection testing pro-
ceeds to the vertex test where the distance field is computed at
each cell vertex and its sign is determined. If the distance field at
two vertices has opposite signs, the boundary of the swept volume
intersects the cell.

The absence of a distance field sign change between cell vertices
does not preclude the possibility of the distance field boundary
intersecting the cell; it is still possible that the boundary intersects
a face or edge of the cell. Therefore, cell intersection testing
precedes the final iterative phase where we search along the
direction gradient for a change in sign. Starting from the distance
field magnitude and gradient at the cell vertices obtained in the
preceding phase, the distance field is iteratively computed using
the update rule

p← p− (dS(p)+ ϵ)∇dS(p) s.t. p ∈ C (13)

Author's personal copy

528 A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536

Fig. 6. An octree bounding volume hierarchy is formed using count-based subdivision. The cells is subdivided when the number of distance fields within it is greater than
two: (a) shows the swept volumes in 3D, (b)–(h) shows a sequence of milling operation that result in the addition of distance fields and subdivision of cell in consecutive
order.

Fig. 7. Cell intersection test. The value and gradient of the distance field are
computed at a test point initially located at the cell vertices and then used to move
the test point so that it cross the cell boundary subject to the constraint that the test
point remain in the cell.

where ϵ is a small positive number. Eq. (13) is very similar to Eq. (3)
for the foot point of a distance field except that each step is slightly
greater than the value of the distance field. This is because we
do not wish to find a point on the surface, but instead to have
a sign change that indicates that the boundary enters the cell.
Additionally, this keeps the limited numerical precision of floating
point numbers from leading to extra operations.

Enforcing the constraint that the test point is within the cell
usually leads to the use of an iterative procedure. It is possible
that the updated point location might cross the boundary in a
single step. However, it is more likely that the constraint will
prevent crossing the boundary in one step and multiple steps will
be required. Therefore, we iteratively compute an updated test
point from the previous point, apply the cell constraint, compute
the distance field at the constrained point, and then test for either
a distance field sign change or for stalling of the point update,
i.e. ∥p′ − p∥ < δ, where δ is a small cutoff value. Fig. 7 gives
an illustration of the algorithm where repeatedly applying the
algorithm results in a sequence of test points p1 to p3 before p4
crosses the distance field boundary.

5.2. Cell culling

Once it has been determined that the boundary of the distance
field of the swept tool enters the cell, it is then useful to determine
whether (a) the boundary contributes to the composite boundary

Fig. 8. Cell culling eliminates distance field boundaries that do not contribute to
the composite boundary.

within the cell, and if so (b) are there any distance fields that are
currently referenced within the cell that now no longer contribute
to the composite boundary. Unless the minimum cell size is
very small there is the strong likelihood that many distance field
boundaries will pass through the cell without contributing to the
composite boundary. For example, consider the case illustrated in
Fig. 8wherewe see a cell that contains the boundaries of 5 distance
fields labeled 0 through 4. Label 0 corresponds to the original flat
planar surface of the workpiece. It is clear that although all of
these distance field boundaries enter the cell, only two of them (2
and 3) actually contribute to the composite boundary. The others
may have contributed at an earlier point in the simulation, but are
now not only unnecessary but also degrade system performance
by needing to be processed during geometric operations.

Therefore, the next step in editing theworkpiece representation
involves determining whether a new distance field should be
added to the cell’s edit data, and alsowhether any existing distance
fields should be removed, a process called cell culling. More
formally given a set Dc of distance fields whose boundaries enter
the cell we wish to find a minimal subset of distance fields, Dc,min
such that

Dc,min ⊆ Dc and

m∈Dc

(Scd)
m
=

n∈Dc ,min

(Scd)
n (14)

where Sdc is the complement of the distance field Sd. Scd
m and

Scd
n denote the set Sdc at elements m and n of sets Dc and Dc,min

respectively. Basically, the intersection of the complement of the
distance fields within the cell should be the same after the culling

Author's personal copy

A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536 529

Fig. 9. Rays are propagated from the x, y and z faces of the cell for culling operation.

operation. The topology of the cell after the culling should not be
altered.

For a simulation system where the tool shapes and motions
are severely restricted such that all swept surfaces are low-order
(e.g. ball end mill with linear motion) an analytic approach to cell
culling can be used. However, in the general case that includes
the wide variety of tools and 5-axis motions commonly found in
NC milling a purely analytic approach is not possible. Therefore,
to find the minimal set Dc,min we use a ray-sampling approach;
we sample ∂Wi+1 using rays that originate at the cell face and
propagate perpendicular to it until they intersect either ∂Wi+1
or the opposite cell face. Since ∂Wi+1 is defined implicitly as the
intersection of the sets bounded by the individual distance fields
within the cell, sampling ∂Wi+1 with a ray consists of computing
the intersection point of the ray with each distance field in Dc
and for each intersection point computing the value of the other
distance fields. A ray intersection point is on ∂Wi+1 if it passes
the surface test given by Eq. (11). For each sampling ray that
results in one or more points on ∂Wi+1 a distance field in the set
Dc is recognized to contribute to ∂Wi+1. After all ray sampling is
completed, any distance field that is not found to contribute to
∂Wi+1 is removed from Dc .

To avoid an orientation bias rays are propagated from the
x, y and z faces of the cell subject to an orientation test as
follows as seen in Fig. 9. During cell intersection testing a rough
determination of the dominant direction of the boundary of the
shape instance is found by finding the maximum values gi of the
absolute values of the components of the distance field gradient at
the cell vertices

gi = max(gi, |∇id(pj)|) i ∈ [x, y, z] j ∈ [1, 8] (15)

where∇i is the i-th component of the gradient andpj are the vertex
positions. If the maximum value in a particular direction is less
than an empirically determined predefined tolerance rays are not
propagated from the corresponding face. We have found that a
tolerance of 0.3 accelerates culling significantly without a loss of
accuracy.

Our current approach to ray sampling is very simple: rays
regularly sample ∂W across the area of the cell from 3 directions in
a uniform5×5 square gridwith a spacing of cs/4where cs is the cell
size. We find that a common minimum spacing of milling passes
during surface finishing is roughly 100µmallowingminimum cell
size of 300 µm to hold on the order of 9 distance fields, a number
that is reasonably well sampled by 25 rays per direction.

Culling is only applied tominimum size cells; a reference to any
distance functions of swept tool that passes the cell intersection
test is simply added to larger cells. This is because culling is an
expensive test whose purpose is to limit the maximum number of
distance field references in a cell to only those that contribute to
the composite surface. Due to the use of count-base subdivision,
cells larger than the minimum size are guaranteed to contain

Fig. 10. The portion of a distance field boundary within a cell can be arbitrarily
small. If culling fails to retain surface S1 then the surface reconstructed with the cell
will only consist of S2 which is incorrect.

no more than the maximum count and therefore do not benefit
significantly from culling. Not culling larger cells does have the
affect of drivingmore cells to theminimumsize, butwe have found
this to not result in a loss of performance.

An obvious concern in any sampling method is to ensure
that the sampling rate is high enough to accurately reconstruct
the signal. However, as demonstrated in Fig. 10, it is possible
for the portion of the composite surface contributed a distance
field with the cell to be arbitrarily small while still having a
significantly effect on the composite surface. Furthermore the
failure to maintain references to this distance field within the cell
can result is a defect in the reconstruction of the surface that is as
large as the cell. Clearly there is no sampling rate that is sufficient
to guarantee accurate sampling.

To improve the quality of the culling algorithm we add a
constraint derived from the fact that the distance field value at
any point within the cell must not be altered by the culling
process. That is, the minimum distance to the surface from any
point cannot change due to culling. To enforce this constraint we
compute the values of distance field at the cell vertices for each
distance field whose boundary intersects the cell and combine
themuse the Boolean operators to determine the composite values
for the cell. After the culling algorithm is used to remove distance
field references from the cell, the Boolean combination of the
remaining distance fields is computed. For each vertex where
there is a discrepancy one of the distance fields that had been
culled must be added back to correct the discrepancy. This simple
technique essentially eliminates the sort of major topological
errors illustrated in Fig. 10.

To accelerate culling we make use of a memory cache. Each
cache entry stores, for all culling rays, the spatial position of a ray’s
intersection with the surface as well as the index of the swept
tool on whose boundary the intersection is located. This can be
represented by a hash table and we use a prime number of cache
entries so that a simple Modulo hash function is sufficient. Using
a modest cache of 8191 entries (11.7 MB for 75 culling rays) we
see a 96.1% hit rate and an increase in culling performance by
approximately a factor of 6.

Typically culling is applied in a continuous fashion; the culling
algorithm is executed on minimum level cells every time they
are edited. This enables optimized rendering of the composite
ADFswhile the milling simulation runs, a benefit for real-time
monitoring of the milling process. However, it is often the case
that the operator does not want to watch every step of the
simulated milling and instead wants to see the final result as
quickly as possible. In this case we can obtain a significant increase
in speed by recognizing that there can often be many boundary
leaf cells that exist at intermediate times in the simulation, but
later become exterior as the milling proceeds deeper into the
workpiece (temporary cells); any time spent culling these cells

Author's personal copy

530 A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536

Fig. 11. Ray casting of a distance field is handled by sphere casting where steps are
taken along the ray equal to the value of the distance field at each point.

will be wasted. Therefore, a fast-to-final mode is provided where
the milling program is simply run backwards and culling of cells
is deferred until after editing is completed. Fast-to-final editing
provides very high simulation rates for rough cutting operation. For
example, the Dome workpiece shown in Fig. 18 takes 103 min to
actually cut at a feed rate of 2000 mm/min whereas the simulated
milling in fast-to-finalmode can be completed in 6.5 s, 952× faster.
Fast-to-final editing provides much less benefit for finish milling
where there are few temporary cells.

6. Rendering

6.1. Rendering of distance fields

The rendering of distance fields has been handled by many
methods, including both indirect and direct methods. In indirect
rendering an explicit secondary representation is first determined
from the distance field boundary and then the secondary
representation is rendered. Indirect rendering methods include
point rendering [43] where the distance field boundary is sampled
with points and the points are then rendered, as well as conversion
to polygonal representations by marching cubes [45] or surface
nets [46]. Direct methods include ray casting, where a ray is
numerically propagated from its origin until the boundary of the
distance field is reached. This is essentially a root finding problem
in which we seek the value of the time-like coordinate t of a ray
r(t) = r0 + rdt , where r0 and rd are the ray origin and direction
respectively, such that d(r(t)) = 0.

Common root finding methods, such as Newton’s method or
Regula-Falsi [47] can be used, but in most cases the distance field
can have localminima before the root so that convergence to global
minima can be difficult to guarantee. A more robust approach that
is well suited for ray casting distance fields is sphere tracing [48]
which uses the value of the distance field to move along the ray
in steps small enough to be guaranteed not miss the surface. A
ray is assumed to intersect the surface when the distance to the
surface becomes smaller than a predefined tolerance d(p) < ϵ.
Convergence rates can be very good except when the ray passes
close to the surface as shown in Fig. 11.

6.2. Rendering of composite ADFs

To render composite distance fields our system employs either
image-order ray casting [41] or a variant of hybrid ray casting
[49,50]. In hybrid ray casting each octree boundary leaf cell is
rendered into a frame buffer independently and their results are
combined together using a Z buffer. As shown in Fig. 12, during
an initial object-order phase the vertices of a cell are projected
into screen space using the standard modelview, projection and
viewport matrices. A rectangular screen region that tightly bounds
the projected vertices is determined and clipped against the

a b

Fig. 12. The screen region for rendering the composite ADF within a cell; (a) The
rectangular cell screen region, (b) A reduced screen region.

viewport. If the cell is an intermediate cell and its clipped screen
region is not NULL, the algorithm recurses to the cell’s children.

Boundary leaf cells are then rendered using image-order ray
casting by propagating rays from the pixels within the rectangular
screen region. The intersection of each ray with the set of distance
fields within the cell is computed and the intersection point
with the minimum ray coordinate that satisfies the surface test
in Eq. (11) is the surface point whose color and brightness are
computed using a lighting model such as Phong. Additionally
the depth of each ray intersection is used to correctly combine
contribution from overlapping cells using a z-buffer.

We improve on the conventional hybrid ray casting algorithm
by recognizing that it is common for the screen region enclosing
the projections of the cell vertices to be much larger than the
projection of the composite ADF boundary within the cell as
illustrated Fig. 12(a). Therefore, we use an algorithm very similar
to cell/boundary intersection testing to iterativelymove test points
from the cell vertices onto the boundary of the composite ADF. The
tolerance for considering a point to be on the composite surface
is deliberately relaxed for this process as a balance between the
need for increased number of iterations that results from a tight
tolerance, and an excessively large screen region for resulting from
loose tolerance. Once the test points have approximately reached
the composite surface, their positions are projected to the screen
and the reduced rectangular screen region bounding these points,
as shown in Fig. 12(b) is used during the succeeding image-order
rendering phase.

Using a reduced screen region dramatically improves rendering
time, but at the risk of missing a part of the projected boundary
that falls outside of the smaller region as indicated in Fig. 12(b).
Uncorrected this will result in image artifacts such as holes. To
avoid image artifacts we require that there be no ray/surface
intersection along the boundary of the screen region. If there is, the
screen region is grown by one row or column in the corresponding
direction. This region growing process continues until there are no
intersections along the region boundary.

When rendering during editing a further performance gain is
obtained by only re-rendering those cells that have been edited. In
most cases this provides a significant reduction in rendering time.

Both hybrid and image-order ray casting renderingmethods are
used since both have various strengths andweaknesses. These will
be discussed in Section 7.

7. Results

To demonstrate the capabilities of our approach to 3-axis
milling simulation we have simulated the fabrication of a

Author's personal copy

A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536 531

a b

Fig. 13. Image of a simulation of the rough cutting of a Japanese Noh mask. (b) Close-up false color image of the nose where each color corresponds to the patch of the
surface contributed by a different distance field.

a b

Fig. 14. (a) Image of the whole finished Japanese Noh mask simulation and (b) a close-up simulation image of the nose of the simulated workpiece.

traditional Japanese mask called a Noh mask whose milling
requiresmore than 700,000 cutter locations. The results are shown
in Table 2. The initial workpiece is a rectangular solid that is
90 mm× 145 mm× 85 mm. The simulation was performed using
a single core of a 3 GHz Intel Core 2 Quad with 4 GB of DRAM.
The maximum depth of the octree is 9, corresponding to a 333 µm
minimumcell size, and themaximumnumber of distance fields per
cell is 4, except for the smallest cells as noted previously. Images
were rendered by software at an 800 × 600 pixel resolution with
the rendered surface filling the window. Simulated milling times
for the 3 milling programs are, 560×, 9.5× and 21×, respectively,
faster than actual cutting times for the given cutting conditions,
and the memory requirements are very modest.

The result of the rough milling operation is shown in Fig. 13(a).
Fig. 13(b) shows a false color close-up of the nose of the mask. In
this image each patch of the surface that corresponds to a distinct
distance field boundary of the swept tool is rendered in a different
color (due to the use of a color table with 32 entries some distance
field boundaries have the same color). The ability to maintain
an exact correspondence of each part of the milled surface to a
particular milling instruction (cutter locations from NC program
file) is invaluable for correcting defects in the milling program.
In contrast to standard ADFs, the very sharp edges of each cut
reconstructed by composite ADFs should be noted. Fig. 14(a) shows
a image of the whole finished mask, and (b) is a close-up of the
nose.

Fig. 15(a) and (c) show an image of the simulated Noh mask
and photograph of the real machined Noh mask, respectively.
Fig. 15(b) and (d) show close-up images of the simulated and
real Noh mask, respectively, within the black box indicated in
Fig. 15(a). The simulated shape of the milled surface agrees
extremely well with the actual shape and replicates fine details
down to a scale of approximately 50 µm. Below this limit the
dynamics of the machining process such as tool deflection due to

Table 2
Noh mask simulation results.

Operation Roughing Finish 1 Finish 2

Cutter locations 44,742 64,541 524,721
Length of path (m) 236 36 359
End mill type Flat Ball Ball
Tool dia. (mm) 10 6 6
Feed rate (mm/min) 2000 1000 1000
Cutting time (min) 118 36 359
Sim. time (min) 0.21 3.8 16.9
Sim. memory (MB) 11.1 15.8 47.3
Render time (ms) 635 856 1200
Total cells 319,889 528,393 550,809
Boundary cells 141,732 212,346 210,703

cutting forces, tool chatter, tool runout, thermal effects, machine
dynamics, etc., become significant. Since the current generation
of this simulator only performs a geometric simulation of NC
milling, the resultant simulated workpiece does not include the
contributions of the dynamics. Additionally, we treat the tool as
cylindrically symmetric when in fact it is not. The existence of
discrete cutter flutes leads to a pattern of cycloidal cutter marks
that can been seen in the close-up photograph but are not included
in the simulation. However, despite these shortcomings, which are
also not handled by any known simulator, the very high quality of
the simulation is readily apparent from the images.

In order to demonstrate the capabilities of 5-axis milling
simulation, we have simulated the fabrication of impeller which
is one of the most complex 5-axis machining task. The initial
workpiece is a cylindrical solid and all the milling stages
require around 650,000 milling instructions. The same simulation
environment and conditions are applied as in the case of above
3-axis milling examples, and it takes 12 min to complete all the
stages of simulation by ball-end mill at different diameters. The
results are shown in Fig. 16 together with the rough and finish
cutting. Finishing of the impeller blades requires high accuracy

Author's personal copy

532 A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536

a b

c d

Fig. 15. (a) Image of the finished simulation of mask part, (b) Close up image of the simulated part within black box indicated in (a), (c) Photograph of the actual finished
mask and (d) Close up photograph of the actual part within black box indicated in (a).

and smooth axis movements to avoid collision and to achieve
good surface quality. Fig. 16(d) shows a false color close-up of
the impeller blade surface. In this image each patch of the surface
corresponds a distinct distance field boundary of swept volume of
5-axis tool motions.

As a test of the accuracy of this approach to milling simulation
we simulated the milling of a cubic solid by a 4 mm diameter ball
end mill. The milling program consisted of a set of parallel linear
sweeps of the tool with a separation of 100µm. Each sweep results
in a cylindrical cut with a 2 mm radius, and the height of the cusps
between each sweep should be 0.625 µm. Fig. 17 shows a plot of
a row the z buffer of a close-up image (solid blue line) as well as a
plot of the height of a 4 mm diameter circle (dashed red line) for
comparison. The shape of the milled surface agrees extremely well
with the expected shape and the cusp height is correct to within
approximately 4 nm which is the limit of floating point precision
in this implementation.

It is important to point out that accuracy of the simulated
surface and maximum workpiece size are not related. The high
accuracy of the system results from the use of analytic or
procedural distance fieldswhose zero level isosurface can be found
with an accuracy limited only by the precision of floating point
numbers. The maximum workpiece size that can be simulated is
limited only by the memory of the computer system on which the

simulation runs. Since new 64-bit computers can use more than
100 GB of memory, this limitation is not significant.

To evaluate the quality of the culling algorithm the simulation
was performed with the number of culling rays set to 25, 225, 361,
and 625 rays per direction. A close-up image of the two areas of the
Noh mask in the resulting representation was rendered and the z
buffers were compared to determine differences in height.We find
that there are no differences in height between the case of 361 rays
and 625 rays indicating that the minimal set has been obtained.
When we compare the default case of 25 rays to the case of 625
rayswe find that there is a distribution of height differenceswhose
mean is 47 nm and standard deviation is 162 nm. The maximum
height error is 2 µm. As expected, we found that the culling time
increases linearly with the number of rays.

Rendering of composite ADFs by both hybrid ray casting (HRC)
and image-order ray casting (IRC) is included in the system since
both offer advantages under certain conditions. Fig. 19 shows
the rendering times versus pixel count for two composite ADFs
of different complexities, the Noh mask with 550,000 cells and
the simpler ‘‘Dome’’ workpiece (Fig. 18) with 77,000 cells, using
either HRC and IRC. The pixel count was varied by changing the
image scale such that the image size varied from invisibly small to
overfilling the full (800×600 pixel) viewport.We find that IRC and
HRC each possess rendering domains in which one outperforms

Author's personal copy

A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536 533

a b

c d

Fig. 16. (a) and (c) Image of the simulation of rough and finish cutting of impeller part respectively, (b) Close up simulation image of the rough cutting within the box
indicated in (a), (d) Close up false color image of the finish cutting within the box indicated in (c).

Fig. 17. Height profile of aworkpiece (solid blue line) and tool (dashed red line) are
shown for comparison. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

the other. IRC has lower per-pixel processing costs and higher per-
cell processing costs. Therefore, it provides better rendering and
simulator performance. However, HRC exhibits much better CPU
cache behavior despite the fact that significantly more total pixel
operations (e.g. cell ray casting, Z testing, etc.) are performed. So
HRC is better suited to full screen rendering that is associated with
interactive rendering of the completed simulation, whereas IRC is
better suited to localized rendering of the localized region during
the simulation.

A current shortcoming of this approach to milling simulation is
the long rendering times. The long rendering times are caused by
the need to compute the ray intersection with each distance field
boundary with a cell and then compute the value of all distance
fields in a cell for each intersection point, an O(N2) operation
where N is the number of distance fields in a cell. While increasing
the maximum depth of the octree reduces the number of distance
fields in the cell, it does so at a slower rate than it increases the

Fig. 18. The Domeworkpiece has 77,000 boundary leaf cells and demonstrates the
relative performance of image-order ray casting and hybrid ray casting.

total number of cells. Strategies for improving the rendering time
are being explored. Attempts to exploit spatial coherence have not
been found to be beneficial at low image scales because adjacent
rays do not usually intersect the same distance field boundary.

As mentioned earlier, the performance of the system has only
a weak dependence on the maximum number of distance fields
permitted within a cell (maximum edit parameter). We have
determined empirically that system performance is optimized by
setting themaximumedit parameter to a value of 4. Too lowavalue
results in increasedmemory consumption and editing times, while
too high a value results in slow rendering times. This is illustrated
by Fig. 20 which shows the relative memory requirements, editing
time and rendering time as a function of maximum edits. A value
of 4 is a reasonable compromise to maximize overall system
performance.

7.1. Comparison with other approaches

In this section, we compare the performance of our systemwith
other systems which use spatial partitioning and solid modeling

Author's personal copy

534 A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536

Fig. 19. Rendering time vs. number of rendered pixels for hybrid ray casting(HRC)
and image-order ray casting(IRC) of Box+Sphere and Mask examples.

Fig. 20. Relative memory consumption, editing time and rendering time vs. the
count-based subdivision maximum edit parameter.

Table 3
Comparison of our system with a voxel based system.

Part Noh mask Golf club

Representation Composite ADF Octree voxel
Dimensions (mm) 90× 145× 85 161× 131× 53
cutter locations 634,004 251,844
Path length (m) 631 394.5
End mill type Flat (r = 5 mm)+

Ball (r = 3 mm)

Ball (r = 3 mm)

Tolerance (mm) 0.001 0.01
Min. cell size (mm) 0.4894 0.3333
Sim. time (min) 41.82 55.27
Sim. memory (MB) 63 700

approaches. Despite the fact that NC simulation has been studied
extensively in the literature, there are few published results of NC
simulation for complex models.

The first comparison is donewith a voxel based system thatwas
published relatively recent (2009). This system uses octree-based
voxel representation of the workpiece and extended marching
cube algorithm for triangulation [51]. We selected the most
complex model, a golf club head mold, from this paper and
compare it with the Nohmask example as seen in Fig. 21. We have
performed the simulation on the same type of machine, 3.2 GHz
Intel Pentium 4 with 1 GB of DRAM. Both examples are similar
in terms of workpiece dimensions, however our example is more
complicated in terms of the number of cutter locations and tool
path length. Table 3 gives a comparison of the simulation time
and memory space for a NC simulation using octree based voxel
representation and composite ADF representation. The first to the
fourth rows present the tool path andmilling information. The fifth
and sixth rows give information about the simulation conditions,
and the last two rows are the simulation times and the required

Fig. 21. Image of the finished golf club head mold [51].

memory space respectively. By comparison, the advantages of
composite ADF based NC milling simulation are clear. A great
reduction in time and space with better accuracy can be achieved
by our approach.

The second comparison is done against the B-rep solid modeler
based simulation system. In this comparison, a commercially
available B-rep solid modeling engine is used to perform 3-axis
milling simulation for ball-end mill, and then comparison is done
for Dome workpiece shown in Fig. 18. All the milling stages
of the model are machined by ball-end milling tool, and there
are around 340,000 cutter locations. The simulated milling time
using the composite ADFs for the all program is only 10.2 min
with 25.4 MB simulation memory and 102 MB of application
memory. However, the B-rep based systemwill take in the order of
hourswith increasing number of geometric entities(up to 230,000)
and memory (up to 700 MB). The number of geometric entities
(summation of boundary faces, edges and vertices), the required
memory space and the simulation time are shown in Fig. 22
respectively. In this example, only the spherical part of the ball-
end mill is in contact throughout the milling program. Therefore,
the resulting surfaces are planar, cylindrical and spherical. As it
can be seen from the results, the performance of B-rep method is
very slow (simulation takes more than 9 h). The larger the tool
path the slower it is. One of the reason for the slowness is that
the in-process model becomesmore andmore complicated during
the material removal process, therefore traversing the tree for
Boolean operations will slow down the system. Compared to the
other methods in the literature, our method robustly handles the
Boolean operations and provides a very good error bound (1 µm)
with a low memory requirement for complex models.

7.2. Future work

A high accuracy image is not always needed. Therefore,
methods of indirect rendering are also being pursued. Generating
and rendering a lower resolution triangle mesh (one triangle per
cell) using Marching Cubes or Surface Nets will enable reasonable
interaction rates during navigation with a high resolution image
generated at completion.

In this paper, We showed our results for the most commons
tools (flat-endmill and ball-endmill) for 3-axismilling. Other tools
can be easily added to our simulation. We are currently in the
process of developing a 5-axis milling simulation capability for
general tools and complex motions.

Currently all editing and rendering is being performed using a
single CPU core without use of a GPU. We are in the process of
developing amulti-core version of the systemand early indications
are promising. Development of a GPU implementation is more
challenging due to the nature of our current editing algorithms,
but this is an area of ongoing effort. The GPU is better suited to

Author's personal copy

A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536 535

Fig. 22. The simulation results for Domeworkpiecewhenusing B-rep basedmilling
simulation.

indirect rendering of the completed composite ADF by rendering a
triangulation of the surface. In this case the cost of generation the
triangle mesh is paid once and then highly interactive rendering of
the alternate representation becomes possible.

8. Conclusions

In this paper, we have described a new shape representation,
the composite ADF, and its application to NCmilling simulation. The
composite ADF representation provides micron accuracy with low
memory requirements and enables simulation speeds up to 1000×
faster than actual cutting time. In a composite ADF all surfaces
are represented by analytic or procedural Euclidean distance fields
that are combined using Boolean operations to implicitly represent
the milled surface of the workpiece. The distance field functions
are sampled within an octree bounding volume hierarchy that
localizes the contribution of each distance field to the composite
boundary and dramatically accelerates geometric operations.

The computation of the distance field of the swept volume of a
milling tool is handled by an inverted trajectory approach where
the problem is solved in the coordinate system of the moving tool.
The effect of this transformation is that instead of computing the
distance between a point and the complex envelope of the swept
tool, we compute minimum distance between a curve and the
piece-wise continuous surface of the stationary tool. For many tool
geometries and 3-axis toolmotions this reduces to a distance query
to analytically defined geometries, however a numerical solution
has to be applied for 5-axis tool motions. This approach can be
generalized to more complex 3-axis and 5-axis tool motions by
resorting to fast numerical optimization methods.

The high quality of the simulated workpiece is readily apparent
when compared to the actual milled workpiece. The high accuracy
provided by this approach to milling simulation will enable the
detection and correction of very small milling errors in the
production of free-form surface for mold and die applications
thereby reducing waste and increasing productivity which is key

to reducing both cost and time in the market for new designs. The
composite ADF provides an exact correspondence between each
portion of the composite surface and the milling instruction that
generated it. This capability reveals the detailed origin of surface
features and enables very rapid revisions to milling programs to
be carried out.

References

[1] Blackmore D, Samulyak R, Leu MC. A singularity theory approach to swept
volumes. International Journal of Shape Modeling 2000;6:105–29.

[2] WangWP, Wang KK. Geometric modeling for swept volume of moving solids.
IEEE Computer Graphics and Applications 1986;6(12):8–17.

[3] Martin RR, Stephenson PC. Sweeping of three dimensional objects. Computer-
Aided Design 1990;22(4):223–33.

[4] Weld John D, Leu Ming C. Geometric representation of swept volumes with
application to polyhedral objects. International Journal of Robotics Research
1990;9(5):105–17.

[5] Abdel-Malek Karim, Yeh Harn-Jou, Othman Saeb. Swept volumes: void and
boundary identification. Computer-Aided Design 1998;30(13):1009–18.

[6] Malek KA, Yeh HJ. Geometric representation of the swept volume using
Jacobian rank-defficiency conditions. Computer-Aided Design 1997;29(6):
457–68.

[7] Blackmore D, Leu MC, Wang L. The sweep-envelope differential equation
algorithm and its application to NC machining verification. Computer-Aided
Design 1997;29:629–37.

[8] Blackmore D, Leu Ming C. A differential equation approach to swept volumes.
Institute of Electrical and Electronics Engineers 1990;120:143–9.

[9] Gaemers S, Elsevier CJ, Bax A, Elber G, Kim M-S. Offsets, sweeps, and
minkowski sums. Computer-Aided Design 1999;31(3): 163–163(1).

[10] William Schroeder, William Lorensen, Steve Linthicum. Implicit modeling of
swept surfaces and volumes. In: VIS’94: proceedings of the conference on
visualization’94. 1994. p. 40–5.

[11] Schmidt R, Wyvill B. Implicit sweep surfaces. Department of Computer
Science. University of Calgary. 2005.

[12] Zhang Xinyu, Kim Young J, Manocha Dinesh. Reliable sweeps. In: 2009
SIAM/ACM joint conference on geometric andphysicalmodeling. SPM’09, New
York (NY, USA): ACM; 2009. p. 373–8.

[13] Juttler Bert, Wagner Michael G. Computer-aided design with spatial rational
b-spline motions. ASME Journal of Mechanical Design 1996;118:118–93.

[14] Malek KA, Yang J, Blackmore D, Joy K. Swept volumes: foundations,
perspectives, and applications. International Journal of Shape Modeling 2006;
12(1):87–127.

[15] Gupta Satyandra K, Saini Sunil K., Spranklin Brent W, Yao Zhiyang. Geometric
algorithms for computing cutter engagement functions in 2.5d milling
operations. Comput. Aided Des. 2005;37(14):1469–80.

[16] Imani BM, SadeghiMH, ElbestawiMA. An improved process simulation system
for ball-end milling of sculptured surfaces. International Journal of Machine
Tools and Manufacture 1998;38(9):1089–107.

[17] Spence Allan D, Abrari Farid, Elbestawi MA. Integrated solid modeler based
solutions for machining. In: SMA’99: proceedings of the fifth ACM symposium
on solid modeling and applications. New York (NY, USA): ACM; 1999.
p. 296–305.

[18] Spence AD, Altintas Y. A solid modeller based milling process simulation and
planning system. Journal of Engineering for Industry 1994;116:61–9.

[19] Ferry W, Yip-Hoi D. Cutter-workpiece engagement calculations by parallel
slicing for five-axis flank milling of jet engine impellers. Journal of
Manufacturing Science and Engineering 2008;130:051011–2.

[20] Hoffmann Christoph M, Hopcroft John E. Geometric ambiguities in boundary
representations. Computer-Aided Design 1987;19(3):141–7.

[21] Sambandan K, Wang KK. Five-axis swept volumes for graphic NC simulation
and verification. In: Proceedings of the ASME design automation conference.
ASME; 1989. p. 143–50.

[22] Hook Tim Van. Real-time shaded NC milling display. In: SIGGRAPH’86:
proceedings of the 13th annual conference on computer graphics and
interactive techniques. New York (NY, USA): ACM; 1986. p. 15–20.

[23] Saito Takafumi, Takahashi Tokiichiro. NC machining with g-buffer method.
In: SIGGRAPH’91: proceedings of the 18th annual conference on computer
graphics and interactive techniques. New York (NY, USA): ACM; 1991.
p. 207–16.

[24] Huang Yunching, Oliver James H. NC milling error assessment and tool path
correction. In: SIGGRAPH’94: proceedings of the 21st annual conference on
computer graphics and interactive techniques. New York (NY, USA): ACM;
1994. p. 287–94.

[25] Hui KC. Solid sweeping in image space-application inNC simulation. TheVisual
Computer 1994;10:306–16.

[26] Muller Heinrich, Surmann Tobias, Stautner Marc, Albersmann Frank, Wein-
ert Klaus. Online sculpting and visualization of multi-dexel volumes.
In: SM’03: Proceedings of the eighth ACM symposium on solid modeling and
applications. New York (NY, USA): ACM; 2003. p. 258–61.

[27] Kawashima Yasumasa, Itoh Kumiko, Ishida Tomotoshi, Nonaka Shiro,
Ejiri Kazuhiko. A flexible quantitative method for NC machining verification
using a space-division based solid model. The Visual Computer 1991;7(2–3):
149–57.

Author's personal copy

536 A. Sullivan et al. / Computer-Aided Design 44 (2012) 522–536

[28] Oliver JH, Goodman ED. Direct dimensional NC verification. Computer-Aided
Design 1990;22(1):3–10.

[29] Jerard Robert B, Drysdale Robert L, Hauck Kenneth, Schaudt Barry,
Magewick John. Methods for detecting errors in numerically controlled
machining of sculptured surfaces. IEEE Computer Graphics and Applications
1989;9(1):26–39.

[30] Chappel Ian T. The use of vectors to simulatematerial removed by numerically
controlled milling. Computer-Aided Design 1983;15(3):156–8.

[31] Inui Masatomo, Ohta Atsushi. Using a GPU to accelerate die and mold
fabrication. IEEE Computer Graphics and Applications 2007;27:82–8.

[32] Inui Masatomo, Umezu Nobuyuki. GPU acceleration of 5-axis milling
simulation in triple dexel representation. In: 2010 international symposium
on flexible automation. Proceedings of 2010 ISFA. 2010.

[33] Bloomenthal Jules, Wyvill Brian, editors. Introduction to implicit surfaces. San
Francisco (CA, USA): Morgan Kaufmann Publishers Inc.; 1997.

[34] Weinert Klaus, Du Shangjian, Damm Patrick, Stautner Marc. Swept volume
generation for the simulation of machining processes. International Journal
of Machine Tools and Manufacture 2004;44(6):617–28.

[35] Mann Stephen, Bedi Sanjeev. Generalization of the imprint method to general
surfaces of revolution for NC machining. Computer-Aided Design 2002;34(5):
373–8.

[36] Hu Zeng-Jia, Ling Zhi-Kui. Swept volumes generated by the natural quadric
surfaces. Computers & Graphics 1996;20(2):263–74.

[37] Rossignac J, Kim JJ, Song SC, Suh KC, Joung CB. Boundary of the volume swept
by a free-form solid in screw motion. Computer-Aided Design 2007;39(9):
745–55.

[38] ErdimHüseyin, IlieşHorea T. Classifying points for sweeping solids. Computer-
Aided Design 2008;40(9):987–98.

[39] BreenDavidE,Mauch Sean,Whitaker RossT. 3D scan conversion of CSGmodels
into distance volumes. In: Proc. 1998 IEEE symposiumonvolumevisualization.
1998. p. 7–14.

[40] Frisken Sarah F, Perry Ronald N, Rockwood Alyn P, Jones Thouis R. Adaptively
sampled distance fields: a general representation of shape for computer

graphics. In: SIGGRAPH’00: proceedings of the 27th annual conference on
computer graphics and interactive techniques. New York (NY, USA): ACM
Press, Addison-Wesley Publishing Co.; 2000. p. 249–54

[41] Frisken Sarah F, Perry Ronald N. Designing with distance fields. In: SIG-
GRAPH’06: ACM SIGGRAPH 2006 courses. New York, NY, USA: ACM; 2006.
p. 60–6.

[42] Hoffmann Christoph M. Robustness in geometric computations. Journal of
Computing and Information Science in Engineering 2001;1(2):143–55.

[43] Perry RonaldN, Frisken SarahF. Kizamu: a system for sculpting digital
characters. In: SIGGRAPH’01: proceedings of the 28th annual conference on
computer graphics and interactive techniques. 2001. p. 47–56.

[44] Frisken SF, Perry RN. Simple and efficient traversal methods for quadtrees and
octrees. Journal of Graphics Tools 2002;7(3):1–12.

[45] Lorensen WilliamE, Cline HarveyE. Marching cubes: a high resolution
3D surface construction algorithm. In: Computer graphics. Proceedings of
SIGGRAPH 87. vol. 21. July 1987. p. 163–9.

[46] Gibson Sarah F. Constrained elastic surface nets: generating smooth surfaces
from binary segmented data. In: Proceedings of the first international
conference onmedical image computing and computer-assisted intervention.
MICCAI’98, London (UK): Springer-Verlag; 1998. p. 888–98.

[47] Press William H, Teukolsky Saul A, Vetterling William T, Flannery Brian P.
Numerical recipes in C (2nd ed.): the art of scientific computing. New York
(NY, USA): Cambridge University Press; 1992.

[48] Hart JC. Sphere tracing: a geometric method for the antialiased ray tracing of
implicit surfaces. The Visual Computer 1996;12(10):527–45.

[49] Hirai Tetu, Yamamoto Tsuyoshi. Hybrid volume ray tracing of multiple
isosurfaces with arbitrary opacity values. IEICE Transactions on Information
and Systems 1996;E79-D(7):965–72.

[50] Mora Benjamin, Jessel Jean-Pierre, Caubet Rene. A new object-order ray-
casting algorithm. In: IEEE visualization 2002. 2002. p. 203–10.

[51] Yau Hong-Tzong, Tsou Lee-Sen. Efficient NC simulation for multi-axis solid
machining with a universal APT cutter. Journal of Computing and Information
Science in Engineering 2009;9(2):021001–0210010.

