a2 United States Patent

Frisken et al.

US006982724B2

(10) Patent No.:
5) Date of Patent:

US 6,982,724 B2
Jan. 3, 2006

(5499 METHOD FOR ANTIALIASING AN OBJECT

REPRESENTED AS A TWO-DIMENSIONAL

DISTANCE FIELD IN OBJECT-ORDER

(75) Inventors: Sarah F. Frisken, Cambridge, MA
(US); Ronald N. Perry, Cambridge,
MA (US)

(73)

Assignee: Mitsubishi Electric Research Labs,

Inc., Cambridge, MA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 163 days.

@D
(22
(65)

Appl. No.: 10/396,861
Filed: Mar. 25, 2003

Prior Publication Data
US 2004/0189662 Al Sep. 30, 2004

Int. Cl.
G09G 5/00

D
(2006.01)

(52)
(58)

US. Cl e 345/611; 345/613
Field of Classification Search 345/611,
345/613, 589; 382/199
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS

5,542,036 A *

(56)

7/1996 Schroeder et al. 345/424
5,875,040 A * 2/1999 Matraszek et al. 358/453
5,940,080 A 8/1999 Ruehle et al.
5,982,387 A * 11/1999 Hellmannccc..c.

6,329,977 B1 * 12/2001 McNamara et al. 345/589
6,377,262 B1 * 4/2002 Hitchcock et al. 345/467
(Continued)

OTHER PUBLICATIONS

Frisken, S. et al., “Adaptively Sampled Distance Fields: A
General Representation of Shape for Computer Graphics,”
SIGGRAPH 2000, pp 249-254.*

Jeng, EK.~Y.; Xiang, Z.; “Fast Soft Shadow Visualization
for Deformable Light Sources Using Adaptively Sampled
Light Field Shadow Maps;” Proceedings of the 10th Pacific
Conference on Computer Graphics and Applications
(PG’02); 2002.*

de Figueiredo, L.H.; Velho, L.; de Oliveira, J.B.; “Revisiting
Adaptively Sampled Distance Fields,” Computer Graphics
and Image Processing, 2001 Proceedings of XIV Brazilian
Symposium on , Oct. 15-18, 2001.*

Jian Huang; Yan Li; Crawfis, R.; Shao—Chiung Lu; Shu-
h—Yuan Liou; “A Complete Distance Field Representation,”
Visualization, 2001. VIS °01. Proceedings, Oct. 21-26,
2001, pp 247-252.*

Hattori, T.; Yamasaki, T.; Watanabe, Y.; Sanada, H.; Tezuka,
Y.; “Distance based vector field method for feature extrac-
tion of characters and figures;” Systems, Man, and Cyber-
netics, 1991; Decision Aiding for Complex Systems, Con-
ference Proceedings, 1991.*

Russ, J.C.; “The Image Processing Handbook,” CRC Press
LLC, 2002, pp 425-429.*

(Continued)

Primary Examiner—Matthew C. Bella

Assistant Examiner—Alysa N. Brautigam

(74) Attorney, Agent, or Firm—Dirk Brinkman; Andrew J.
Curtin

57 ABSTRACT

A method and apparatus antialias a region of a two-
dimensional distance field representing an object. The two-
dimensional distance field is partitioned into cells where
each cell includes a method for reconstructing the two-
dimensional distance field within the cell. A set of cells of
the two-dimensional distance field associated with the
region is identified and a set of pixels associated with the
region is located. For each pixel, a set of components is
specified. For each component, a distance is determined
from the set of cells and then mapped to the antialiased
intensity of the component of the pixel.

134 Claims, 12 Drawing Sheets

401
402
e 404
;) 406
! "
i ‘RGB<-‘~4 -------------- {1 +————
‘ L
R [440
r 420 r 430 Mo Di i
Represent Associate] viap ,TSF“”KC !
Object by :> Sample Points Determine :> loAmml.msed ‘
Distance with Pixel Distance Intensity
Field for Object Components of Component
[.403
el % 405
Distance ;
Field]
gy 40T A 404

US 6,982,724 B2
Page 2

U.S. PATENT DOCUMENTS

6,603,484 Bl *
6,721,446 Bl *
6,741,246 B2 *

2002/0097912 Al *

OTHER PUBLICATIONS

Lau, W. H.; Wiseman, N.; “The Compositing Buffer: A
Flexible Method for Image Generation and Image Editing,”
Computer Graphics Forum, vol. 14 (1995), No. 4, pp 229.*
McNamara, R., McCormack, J., Jouppi, N., “Prefiltered
Antialiased Lines Using Half—Plane Distance Functions,”
HWWS 2000, Interlaken, Switzerland, 2000, pp 77-86.*
Satherley, R., Jones, M.W., “Hybrid Distance Field Com-
putation,” University of Wales Swansea, 2001, pp 1-16.*
Payne, B., Toga, A., “Distance Field Manipulation of Sur-
face Models,” IEEE 0272-17-16/92/0100-0065, Jan. 1992,
pp 65-71.*

Kimmel, R., “Using Multi-Layer Distance Maps for Motion
Planning on Surfaces with Moving Obstacles,” IEEE
1051-4651/94, 1994, pp 367-372.*

IEEE Search Report.*

Zongker, D., Wade, G. and Salesin, D. 2000. Example—
Based Hinting of TrueType Fonts. In Proceedings ACM
SIGGRAPH 2000, pp. 411-416.

Whitted, T. 1980. An Improved Illumination Model for
Shaded Display. In Communications of the ACM, Jun. 1980
vol. 23, No. 6.

Westover, Lee. Footprint Evaluation for Volume Rendering.
In Computer Graphics, vol. 24, No. 4, Aug. 1990.
Turkowski, Kenneth. Anti-Aliasing through the Use of
Coordinate Transformations. In ACM Transactions on
Graphics, vol. 1, No. 3, Jul. 1982, pp. 215-234.

Sramek, M. and Kaufman, A. 1999. Alias—Free Voxelization
of Geometric Objects. In IEEFE Transactions on Visualiza-
tion and Computer Graphics, 3(5), pp. 251-266.

Shamir, A. and Rappoport A. 1998. Feature—based Design of
Fonts Using Constraints. In Proc. Electronic Publishing
1998, pp. 93-108.

Schneider, P. 1990. An Algorithm for Automatically Fitting
Digitized Curves. In Graphics GEMS I, ed. A. Glassner, pp.
612-626.

Nishita, T., Sederberg, T., and Kakimoto M. 1990. Ray
Tracing Trimmed Rational Surface Patches. Computer
Graphics, vol. 24, No. 4, Aug. 1990.

Platt, J. 2000. Optimal Filtering for Patterned Displays. In
IEEFE Signal Processing Letters, 7(7), pp. 179-180.

Perry, R. and Frisken, S. 2001. Kizamu: A System for
Sculpting Digital Characters. In Proceedings ACM SIG-
GRAPH 2001, pp. 47-56.

Osher, S and Sethian, J. 1988. Fronts Propagating with
Curvature—Dependent Speed: Algorithms Based on Hamil-
ton—Jacobi Formulations, Journal of Computational Phys-
ics, pp. 12—-49.

O’Regan, K., Bismuth, N., Hersch, R. and Pappas, A. 1996.
Legibility of Perceptually-Tuned Grayscale Fonts. In Proc.
IEEFE Int. Conf. Image Processing, pp. 537-540.

8/2003 Frisken et al. 345/622
4/2004 Wilensky et al. 382/162
5/2004 Perry et al. ... 345/420
7/2002 Kimmel et al. 382/199

Mitchell, D. 1996. Consequences of Stratified Sampling In
Graphics. In Proc. ACM SIGRRAPH 1996, pp. 277-280.
Mitchell, D. 1987. Generating Antialiase Images at Low
Sampling Rates. In Proc. ACM SIGRRAPH 1987, pp. 65-72.
McNamara, R., McCormack, J. and Jouppi, N. 2000. Pre-
filtered Antialiased Lines Using Half-Plane Distance Func-
tions. In Proc. SIGGRAPH/Eurographics Workshop on
Graphics Hardware 2000, pp. 77-86.

Lee, M., Redner, R. and Uselton, S. 1985. Statistically
Optimized Sampling for Distributed Ray Tracing. In Pro-
ceedings ACM SIGGRAPH 1985, pp. 61-67.

Lee, J., Forlizzi, J. and Hudson, S. 2002. The Kinetic
Typography Engine: An Extensible System for Animating
Expressive Text. In Proc. UIST 02, pp. 81-90.

Jones, T. and Perry, R. 2000. Antialiasing with Line
Samples. In Proceedings Eurographics Rendering Work-
shop, pp. 197-205.

Johnson, D. and Cohen, E. 1998. A Framework For Efficient
Minimum Distance Computations. In Proc. IEEE Interna-
tional Conference on Robotics and Automation, pp.
3678-3684.

Itoh, K. and Ohno, Y. 1993. A Curve Fitting Algorithm for
Character Fonts. In Electronic Publishing 6(3), pp. 195-205.
Hu, C. and Hersch, R. 2001. Parameterizable Fonts Based on
Shape Components. In IEEFE CG&A May/Jun., pp. 70-85.
Hoff, K., Zaferakis, A., Lin, M. and Manocha, D. 2001. Fast
and Simple 2D Geometric Proximity Queries Using Graph-
ics Hardware. In Proc. Interactive 3D Graphics’01.
Hersch, R., Betrisey, C., Bur, J. and Gurtler A. 1995.
Perceptually Tuned Generation of Grayscale Fonts. In IEFE
CG&A, Nov., pp. 78-89.

Hersch, R. 1987. Character Generation Under Grid Con-
straints. In Proceedings ACM SIGGRAPH 1987, pp. 71-80.
Gupta, S. and Sproull, R. 1981. Filtering Edges for Gray-
scale Displays. In Computer Graphics 15(3), pp. 1-5.
Frisken, S. and Perry, R. 2003. Simple and Efficient Tra-
versal Methods for Quadtrees and Octrees. To appear in
Journal of Graphics Tools. See also MERL technical report
TR2002-41.

Frisken, S. and Perry, R. 2002. Efficient Estimation of 3D
Euclidean Distance Fields from 2D Range Images. In Proc.
IEEF/ACM SIGGRAPH Volume Visualization and Graphics
Symposium 2002, pp. 81-88.

Frisken, S., Perry, R., Rockwood, A. and Jones, T. 2000,
Adaptively Sampled Distance Fields: a General Represen-
tation of Shape for Computer Graphics. In Proceedings
ACM SIGGRAPH 2000, pp 249-254.

Desbrun, M. and Gascuel, M-P. 1995. Animating Soft
Substances with Implicit Surfaces. In Proc. SIGGRAPH
1995. pp. 287-290.

Cook, R. 1986. Stochastic Sampling in Computer Graphics.
in ACM Transactions on Graphics, pp. 51-72.

Betrisey, C., Blinn, J. E., Dresevic, B., Hill, B., Hitchcock,
G., Keely, B., Mitchell, D. P, Platt, J. C. and Whitted, T.
2000. Displaced Filtering for Patterned Displays. In Proc.
Society for Information Display Symp. pp. 296-299.

* cited by examiner

US 6,982,724 B2

Sheet 1 of 12

Jan. 3, 2006

U.S. Patent

U.S. Patent Jan. 3, 2006 Sheet 2 of 12 US 6,982,724 B2

0
301 -

e
2
. e o =
- -
(| (
\ \
w— — |
= o =
o7 = A

301 —

US 6,982,724 B2

Sheet 3 of 12

Jan. 3, 2006

U.S. Patent

|87
i,

q Pl
d0ueIsI(] AJ
SOt - ,
e :
Lo~ stuouoduwo [0y I
Juauodwony jo 4 S J 1921q0O 10} [ty
(isuayug AURISI(] [oxid i adumIsi(q
! i < 1 LAY N r - 4— N.A \ ;
pasvrjenuy of, (— QU] (g swed Qpduieg 7 £q109(q0
ittt draeas . IDOSS Y Juasarday
aoueisi(q depy _ 4_
,, 0ct 0Tt ,; , 01t J
Ory - L -
S
I U 4
10y J

U.S. Patent Jan. 3, 2006 Sheet 4 of 12 US 6,982,724 B2

ﬁ-
-
W
—_
=
U
!
| 3 o
[{) ~
I R
— -

0

T3

U.S. Patent Jan. 3, 2006 Sheet 5 of 12 US 6,982,724 B2

610

QO
V=
30
S
N
=
=+
\ ~Q
\ o
R

Fig. 6A

US 6,982,724 B2

Sheet 6 of 12

Jan. 3, 2006

U.S. Patent

L Bl
00L

Alsuaiuy ;o
souesiq dey -

SIIRD JO 188
O} 20URISI(]
UL -

juauodwo)) jo
A)sudiu]
paseIRnuY
QUIULIDIA(]

s[axid

AH suauodwo))

10138 AJ10adg

19XId YOra 10,]]

¢, J F

HOREN|
im
PAIRID0SSY
SpoXId JO 1§

-

0pL J

0sL J

© 218007

0L

L — ﬁ

U013y 3utuIeiuo)

SI1°D 3O
19§ Ajnuap]

0zL J

102(qQ 10J pJaL]
dULISI(]

Aq122lq0
Juasalday

01L J

1L

US 6,982,724 B2

Sheet 7 of 12

Jan. 3, 2006

U.S. Patent

e 81,]
008

PLD [°X1d

01 P[2L] 2dUrISI(]
UsI|y pue dpuds

4 s ;1 j
P $a8p] 593pi] 1] e
40 suoled A—hy31y pue do, pur wonog puv oty
ury L. (—paod | - (— pur ——‘do] ‘wonog
. uays1] uayIm(
uayJe(q 19910(]
0¢R 0ty 0¢8] - (T8

018 J

US 6,982,724 B2

126 \U

6 ‘314
006

[16 \\w

Sheet 8 of 12

P11 22UvISI(]

Jan. 3, 2006

U.S. Patent

s103d119$3(] |
Arepunog A ﬁ paIapIO _ |
‘ m
DloL{ SoUTSIC] s101d11asa(g 15177
Qmw,‘oﬁzocom.u A&l ».Ew::o.m @QG?O
a1elauan) NTIDUDN)
] A A
0¢o J 0co - |
sojdweg |
Mg uad _
106

US 6,982,724 B2

Sheet 9 of 12

Jan. 3, 2006

U.S. Patent

01 ‘31,
0001 101 —
»:u.:z.u:m
jenedg 101 l\\\
101) 4 m.::%.amom:
| e Lwpunoq |
| suonoasIaug é passa01da1]
h 4
PIAL] AdURISI(Ao Ayoueiaty s101d110so(]
| PIRLI e —fronnsuo) oL K oy (] 1eneds —f Swpunog
Aumsi(] | AUV | S 1IDNISUO,) ssasoadaiy
[+01 - jenedg L1ond)
0t0r1 <01 - ozo1 < otor J
o[y 11
sao1dosaq
Alepunoyg
1001

US 6,982,724 B2

Sheet 10 of 12

Jan. 3, 2006

U.S. Patent

IT 31
0011
111 \w
1CT1 (\U
stoydrrosag SyuIod wo
Liepunog | 151 vu._u?_o

1T —
)

'

‘
| sroidriosa(g
Aepunog
aepdn

H

i

orT1

saodiasaq
Alepunog
SZ1ENI]

1

0cI] J

_ INOWO)-08]

)

-

0zl J

SO JOIST]
PYIDIPIO)

DIRIDUDDY

Orer J

INONO)-0S]
199128

pPlatd
aourRISI(]

1011 -

il Y |
00CT

US 6,982,724 B2

el
AN
D

S 4 asod _
= ~ h yepdn -
e Chhﬁ _-liw* rﬁ* :_Y:;;, :_r~
= [cl . B | .
2 ~ N | >
7 _ PO BUISTI[RNUY aurvedg 123(q0) jo
Souityy paseg-aoumsi(] puv asod k' 2 I0] 350] uonruasalday
J0 2ouanhag Do [(o aend - T AU
< , > Surs 102[g() tapuy 122(q0 aepdn DIOL] 2oUMISI(]
&
S . | , 7
s L | \
5 | 1021
- r
! sowivlj
POYIDA - jo asuanbag
= Suiseienuy - aopdiog
S Paseg-20urIsi(] | uonruiny
= = =
. Nﬁmﬁ ~ =y -
S C:O~
-]

US 6,982,724 B2

Sheet 12 of 12

Jan. 3, 2006

U.S. Patent

TLET~ |
lv

_ SaNuA ﬁ
W 20UeISI(] |
pajdumrg |

v

ATOWIQIA]

2 Ul 21015

Losel

€1 '31d
00€T
san[eA 20urIsIcy \
pardwreg aunwidia(g OLtl
SaAdn) N
papualx;] ajeal) 09¢1
ITel
. IZET ‘
W0 W 0<E : s101dLnsa(g
pwo)y e sioduosaaq IO 12110 Smpunog
Arepunog uoniued |
PN |
= 1020Q() 10}
: SUOLED 5 . . -
DOYIDIA A iy A 00 :E:ﬁ, A Godunsa
HOTIOIISHOD DY (OM] OlUL JLO 1OUdo) \— ».:ﬂcscm
‘ Ajroadg [[°0) HoDRIE] Ajluop] U]
_ . .. L.
0Tl | Ovel -0ce | hxo_:

US 6,982,724 B2

1

METHOD FOR ANTIALIASING AN OBJECT
REPRESENTED AS A TWO-DIMENSIONAL
DISTANCE FIELD IN OBJECT-ORDER

FIELD OF THE INVENTION

The invention relates generally to the field of computer
graphics, and more particularly to rendering two-
dimensional objects represented by distance fields.

BACKGROUND OF THE INVENTION

In the field of computer graphics, the rendering of two-
dimensional objects is of fundamental importance. Two-
dimensional objects, such as character shapes, corporate
logos, and elements of an illustration contained in a
document, are rendered as static images or as a sequence of
frames comprising an animation. There are numerous rep-
resentations for two-dimensional objects and it is often the
case that one representation is better than another represen-
tation for specific operations such as rendering and editing.
In these cases, a conversion from one form to another is
performed.

Although we focus here on digital type, possibly the most
common and important two-dimensional object, the follow-
ing discussion applies to all types of two-dimensional
objects.

We begin with some basic background on digital type. A
typical Latin font family, such as Times New Roman or
Arial, includes a set of fonts, e.g., regular, italic, bold and
bold italic. Each font includes a set of individual character
shapes called glyphs. Each glyph is distinguished by its
various design features, such as underlying geometry, stroke
thickness, serifs, joinery, placement and number of contours,
ratio of thin-to-thick strokes, and size.

There are a number of ways to represent fonts, including
bitmaps, outlines, e.g., Type 1 [Adobe Systems, Inc. 1990]
and TrueType [Apple Computer, Inc. 1990], and procedural
fonts, e.g., Knuth’s Metafont, with outlines being predomi-
nant. Outline-based representations have been adopted and
popularized by Bitstream Inc. of Cambridge, Mass., Adobe
Systems, Inc. of Mountain View, Calif., Apple Computer,
Inc., of Cupertino, Calif., Microsoft Corporation of
Bellevue, Wash., URW of Hamburg, Germany, and Agfa
Compugraphic of Wilmington, Mass.

Hersch, “Visual and Technical Aspects of Type,” Cam-
bridge University Press. 1993 and Knuth, “TFX and
METAFONT: New Directions in Typesetting,” Digital Press,
Bedford, Mass. 1979, contain comprehensive reviews of the
history and science of fonts.

Of particular importance are two classes of type size:
body type size and display type size. Fonts in body type are
rendered at relatively small point sizes, e.g., 14 pt. or less,
and are used in the body of a document, as in this paragraph.
Body type requires high quality rendering for legibility and
reading comfort. The size, typeface, and baseline orientation
of body type rarely change within a single document.

Fonts in display type are rendered at relatively large point
sizes, e.g., 36 pt. or higher, and are used for titles, headlines,
and in design and advertising to set a mood or to focus
attention. In contrast to body type, the emphasis in display
type is on esthetics, where the lack of spatial and temporal
aliasing is important, rather than legibility, where contrast
may be more important than antialiasing. It is crucial that a
framework for representing and rendering type handles both
of these two classes with conflicting requirements well.

10

15

20

25

30

35

45

50

55

60

65

2

Type can be rendered to an output device, e.g., printer or
display, as bi-level, grayscale, or colored. Some rendering
engines use bi-level rendering for very small type sizes to
achieve better contrast. However, well-hinted grayscale
fonts can be just as legible.

Hints are a set of rules or procedures stored with each
glyph to specify how an outline of the glyph should be
modified during rendering to preserve features such as
symmetry, stroke weight, and a uniform appearance across
all the glyphs in a typeface.

While there have been attempts to design automated and
semi-automated hinting systems, the hinting process
remains a major bottleneck in the design of new fonts and in
the tuning of existing fonts for low-resolution display
devices. In addition, the complexity of interpreting hinting
rules precludes the use of hardware for font rendering. The
lack of hardware support forces compromises to be made
during software rasterization, such as the use of fewer
samples per pixel, particularly when animating type in real
time.

Grayscale font rendering typically involves some form of
antialiasing. Antialiasing is a process that smoothes out
jagged edges or staircase effects that appear in bi-level fonts.
Although many font rendering engines are proprietary, most
use supersampling, after grid fitting and hinting, with 4 or 16
samples per pixel followed by down-sampling with a 2x2 or
4x4 box filter, respectively.

Rudimentary filtering, such as box filtering, is justified by
the need for rendering speed. However, even that approach
is often too slow for real-time rendering, as required for
animated type, and the rendered glyphs suffer from spatial
and temporal aliasing.

Two important trends in typography reveal some inherent
limitations of prior art font representations and thus provide
the need for change.

The first trend is the increasing emphasis of reading text
on-screen due to the dominant role of computers in the
office, the rise in popularity of Internet browsing at home,
and the proliferation of PDAs and other hand-held electronic
devices. These displays typically have a resolution of
72-100 dots per inch, which is significantly lower than the
resolution of printing devices.

This low-resolution mandates special treatment when
rasterizing type to ensure reading comfort and legibility, as
evidenced by the resources that companies such as
Microsoft and Bitstream have invested in their respective
ClearType and Font Fusion technologies.

The second trend is the use of animated type, or kinetic
typography. Animated type is used to convey emotion, to
add interest, and to visually attract the reader’s attention.
The importance of animated type is demonstrated by its
wide use in television and Internet advertising.

Unfortunately, traditional outline-based fonts have limi-
tations in both of these areas. Rendering type on a low-
resolution display requires careful treatment in order to
balance the needs of good contrast for legibility, and reduced
spatial and/or temporal aliasing for reading comfort.

As stated above, outline-based fonts are typically hinted
to provide instructions to the rendering engine for optimal
appearance. Font hinting is labor intensive and expensive.
For example, developing a well-hinted typeface for Japanese
or Chinese fonts, which can have more than ten thousand
glyphs, can take years. Because the focus of hinting is on
improving the rendering quality of body type, the hints tend
to be ineffective for type placed along arbitrary paths and for
animated type.

US 6,982,724 B2

3

Although high quality filtering can be used to antialias
grayscale type in static documents that have a limited
number of font sizes and typefaces, the use of filtering in
animated type is typically limited by real-time rendering
requirements.

SUMMARY OF THE INVENTION

The invention provides a method and apparatus for anti-
aliasing a region of a two-dimensional distance field repre-
senting an object. The two-dimensional distance field is
partitioned into cells where each cell includes a method for
reconstructing the two-dimensional distance field within the
cell. A set of cells of the two-dimensional distance field
associated with the region is identified and a set of pixels
associated with the region is located. For each pixel, a set of
components is specified. For each component, a distance is
determined from the set of cells and then mapped to the
antialiased intensity of the component of the pixel.

In one aspect of the invention, the two-dimensional dis-
tance field is an adaptively sampled distance field.

In another aspect of the invention, the distance is deter-
mined from a single sample from the set of cells to provide
efficient, high quality, antialiasing of the object.

In another aspect of the invention, adaptive distance-
based supersampling provides optimal, efficient, high
quality, antialiasing of the object.

In another aspect of the invention, distance-based auto-
matic hinting provides high quality antialiasing of the
object.

In another aspect of the invention, distance-based grid
fitting provides high quality antialiasing of the object.

In another aspect of the invention, the individual addres-
sability of the components of the pixel is exploited to
provide an increase in the effective resolution of the anti-
aliasing of the object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are block diagrams of prior art distance
field representations for glyphs;

FIGS. 2A and 2B are block diagrams of distance field
representations according to a preferred embodiment of the
invention;

FIG. 3 is a block diagram of a bi-quadratic cell of the
distance field according to a preferred embodiment of the
invention;

FIG. 4 is a flow diagram of a method for antialiasing an
object in image-order according to the invention;

FIG. § is a graph of a linear filter used by the invention;

FIGS. 6A, 6B, and 6C are diagrams of samples near a
component of a pixel;

FIG. 7 is a flow diagram of a method for antialiasing an
object in object-order according to the invention;

FIG. 8 is a flow diagram of a method for distance-based
automatic hinting according to the invention;

FIG. 9 is a flow diagram of a method for converting a pen
stroke to a distance field according to the invention;

FIG. 10 is a flow diagram of a method for converting a
two-dimensional object to a distance field according to the
invention;

FIG. 11 is a flow diagram of a method for converting a
distance field to boundary descriptors according to the
invention;

FIG. 12 is a flow diagram of a method for animating an
object according to the invention; and

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 13 is a flow diagram of a method for generating a
two-dimensional distance field within a cell enclosing a
corner of a two-dimensional object according to the inven-
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Distance Field Representation of Glyphs

Our invention represents a closed two-dimensional shape
S, such as a glyph, a corporate logo, or any digitized
representation of an object, as a two-dimensional signed
distance field D. For the purpose of our description, we use
glyphs.

Informally, the distance field of a glyph measures a
minimum distance from any point in the field to the edge of
the glyph, where the sign of the distance is negative if the
point is outside the glyph and positive if the point is inside
the glyph. Points on the edge have a zero distance.

Formally, the distance field is a mapping D:®*—% for

all p € ®? such that D(p)=sign(p)-min{|lp—q|;: for all points
q on the zero-valued iso-surface, i.e., edge, of S}, sign(p)=
{-1if p is outside S, +1 if p is inside S}, and || is the
Euclidean norm.

Prior art coverage-based rendering methods that use a
single discrete sample for each pixel can completely miss
the glyph even when the sample is arbitrarily close to the
outline. The rendered glyph has jagged edges and dropout,
which are both forms of spatial aliasing. If the glyph is
animated, then temporal aliasing causes flickering outlines
and jagged edges that seem to ‘crawl’ during motion. Taking
additional samples per pixel to produce an antialiased ren-
dition can reduce these aliasing effects, but many samples
may be required for acceptable results.

In contrast, continuously sampled distance values accord-
ing to our invention indicate a proximity of the glyph, even
when the samples are outside the shape.

Furthermore, because the distance field varies smoothly,
ie.,itis C° continuous, sampled values change slowly as the
glyph moves, reducing temporal aliasing artifacts.

Distance fields have other advantages. Because they are
an implicit representation, they share the benefits of implicit
functions. In particular, distance fields enable an intuitive
interface for designing fonts. For example, individual com-
ponents of glyphs such as stems, bars, rounds, and serifs can
be designed separately. After design, the components can be
blended together using implicit blending methods to com-
pose different glyphs of the same typeface.

Distance fields also have much to offer in the area of
kinetic typography or animated type because distance fields
provide information important for simulating interactions
between objects.

In a preferred embodiment, we use adaptively sample
distance fields, i.e., ADFs, see U.S. Pat. No. 6,396,492,
“Detail-directed hierarchical distance fields,” Frisken, Perry,
and Jones, incorporated herein by reference.

ADFs are efficient digital representations of distance
fields. ADFs use detail-directed sampling to reduce the
number of samples required to represent the field. The
samples are stored in a spatial hierarchy of cells, e.g., a
quadtree, for efficient processing. In addition, ADFs provide
a method for reconstructing the distance field from the
sampled values.

Detail-directed or adaptive sampling samples the distance
field according to a local variance in the field: more samples
are used when the local variance is high, and fewer samples

US 6,982,724 B2

5

are used when the local variance is low. Adaptive sampling
significantly reduces memory requirements over both regu-
larly sampled distance fields, which sample at a uniform rate
throughout the field, and 3-color quadtrees, which always
sample at a maximum rate near edges.

FIGS. 1A-1B compare the number of cells required for a
3-color quadtree for a Times Roman ‘a’ and ‘D’ with the
number of cells required for a bi-quadratic ADF in FIGS.
2A-2B of the same accuracy. The number of cells is directly
related to storage requirements. Both quadtrees have a
resolution equivalent to a 512x512 image of distance values.
The 3-color quadtrees for the ‘a’ and the ‘D’ have 17,393 and
20,813 cells respectively, while their corresponding
bi-quadratic ADFs have 457 and 399 cells. Bi-quadratic
ADFs typically require 5-20 times fewer cells than the prior
art bi-linear representation of Frisken et al., “Adaptively
Sampled Distance Fields: a General Representation of Shape
for Computer Graphics,” Proceedings ACM SIGGRAPH
2000, pp. 249-254, 2000.

Bi-Quadratic Reconstruction Method

Frisken et al. use a quadtree for the ADF spatial hierarchy,
and reconstruct distances and gradients inside each cell from
the distances sampled at the four corners of each cell via
bi-linear interpolation. They suggest that “higher order
reconstruction methods . . . might be employed to further
increase compression, but the numbers already suggest a
point of diminishing return for the extra effort”.

However, bi-linear ADFs are inadequate for representing,
rendering, editing, and animating character glyphs accord-
ing to the invention. In particular, they require too much
memory, are too inefficient to process, and the quality of the
reconstructed field in non-edge cells is insufficient for opera-
tions such as dynamic simulation.

A “bounded-surface” method can force further subdivi-
sion in non-edge cells by requiring that non-edge cells
within a bounded distance from the surface, i.e., an edge,
pass an error predicate test, see Perry et al., “Kizamu: A
System for Sculpting Digital Characters,” Proceedings ACM
SIGGRAPH 2001, pp. 47-56, 2001. Although that reduces
the error in the distance field within this bounded region, we
have found that for bi-linear ADFs that method results in an
unacceptable increase in the number of cells.

To address those limitations, we replace the bi-linear
reconstruction method with a bi-quadratic reconstruction
method. Bi-quadratic ADFs of typical glyphs tend to require
5-20 times fewer cells than bi-linear ADFs. Higher reduc-
tion in the required number of cells occurs when we require
an accurate distance field in non-edge cells for operations
such as dynamic simulation and animated type.

This significant memory reduction allows the glyphs
required for a typical animation to fit in an on-chip cache of
modem CPUs. This has a dramatic effect on processing
times because system memory access is essentially
eliminated, easily compensating for the additional compu-
tation required by the higher order reconstruction method.

FIG. 3 illustrates a bi-quadratic ADF cell 300 according
to our preferred embodiment. Each cell in the bi-quadratic
ADF contains nine distance values 301. A distance and a
gradient at a point (X, y) 302 are reconstructed from these
nine distance values according to Equations 1-3 below.

There are a variety of bi-quadratic reconstruction methods
available. We use a bivariate interpolating polynomial which
guarantees C° continuity along shared edges of neighboring
cells of identical size. As with the bi-linear method, conti-
nuity of the distance field between neighboring cells of
different size is maintained to a specified tolerance using an

10

15

20

30

40

45

50

55

60

65

6

error predicate. The error predicate controls cell subdivision
during ADF generation, see Perry et al., above.

The distance and gradient at the point (X, y) 302, where x
and y are expressed in cell coordinates, i.e., (X, y) €[0,1] x
[0,1], are determined as follows:

Let xv;=x-0.5 and xv,=x-1

Let yv,;=y—0.5 and yv,=y-1

Let bx,=2xv,"xv,, bx,=—4x'xv,, and bx;=2x"xv,
Let by =2yvyyv,, by,=—4y-yv,, and by;=2y-yv,
dist=by,-(bxy-dy+bxy dy+bxyds)+

by, (bxyd+bx, ds+brsdg)+

by (b, d+bx,y dg+bry ds) @

grad, =—[by,(4x-(d, -2d +d;)-3d,~d+4d,)+
by, (4x(d;-2ds+dg)-3d,~dg+4ds)+

bys-(4x(d7-2dg+do)-3d7-do+4dy)] @

grad,=—[(4y-3)- (b dy +bry dy+bxs d)—(8y—-4)-(bx, d y+bxyds+
by dg)+(4y-1) (bx - d+bxy dg+bxydg)]. (©)]

Reconstructing a distance using floating point arithmetic
can require ~35 floating-point operations (flops), and recon-
structing a gradient using floating point arithmetic can
require ~70 flops. Because our reconstruction methods do
not contain branches and the glyphs can reside entirely in an
on-chip cache, we can further optimize these reconstruction
methods by taking advantage of special CPU instructions
and the deep instruction pipelines of modern CPUs. Further,
we can reconstruct a distance and a gradient using fixed-
point arithmetic.

Compression for Transmission and Storage

Linear Quadtrees

The spatial hierarchy of the ADF quadtree is required for
some processing, €.g., collision detection, but is unnecessary
for others, e.g., cell-based rendering as described below.

To provide compression for transmission and storage of
ADF glyphs, we use a linear quadtree structure, which stores
our bi-quadratic ADF as a list of leaf cells. The tree structure
can be regenerated from the leaf cells as needed.

Each leaf cell in the linear ADF quadtree includes the
cell’s x and y positions in two bytes each, the cell level in
one byte, the distance value at the cell center in two bytes,
and the eight distance offsets from the center distance value
in one byte each, for a total of 15 bytes per cell.

Each distance offset is determined by subtracting its
corresponding sample distance value from the center dis-
tance value, scaling by the cell size to reduce quantization
error, and truncating to eight bits. The two bytes per cell
position and the one byte for cell level can represent ADFs
up to 2'°x2'° in resolution. This is more than adequate for
representing glyphs to be rendered at display screen reso-
lutions.

Glyphs can be accurately represented by 16-bit distance
values. Encoding eight of the distance values as 8-bit
distance offsets provides substantial savings over storing
each of these values in two bytes. Although, in theory, this
may lead to some error in the distance field of large cells, we
have not observed any visual degradation.

A high-resolution glyph typically requires 500-1000 leaf
cells. Lossless entropy encoding can attain a further 35-50%
compression. Consequently, an entire typeface of high-
resolution ADFs can be represented in 300500 Kbytes. If

US 6,982,724 B2

7

only body type is required or the target resolution is very
coarse, as for cell phones, then lower resolution ADFs can
be used that require % to %: as many cells.

These sizes are significantly smaller than grayscale bit-
map fonts, which require ~0.5 Mbytes per typeface for each
point size, and are comparable in size to well-hinted outline-
based fonts. Sizes for TrueType fonts range from 10’s of
Kbytes to 10’s of Mbytes depending on the number of
glyphs and the amount and method of hinting. Arial and
Times New Roman, two well-hinted fonts from the Mono-
type Corporation, require 266 Kbytes and 316 Kbytes
respectively.

Run-time Generation from Outlines

According to our invention, and as described in detail
below, ADFs can be generated quickly from existing outline
or boundary descriptors, ¢.g., Bezier curves, using the tiled
generator described by Perry et al. The minimum distance to
a glyph’s outline or boundary is computed efficiently using
Bezier clipping, see Sederberg et al., “Geometric Hermite
Approximation of Surface Patch Intersection Curves,”
CAGD, 8(2), pp. 97-114, 1991.

Generation requires 0.04-0.08 seconds per glyph on a 2
GHz Pentium IV processor. An entire typeface can be
generated in about four seconds. Because conventional hints
are not needed, the boundary descriptors required to gener-
ate the ADFs are substantially smaller than their correspond-
ing hinted counterparts.

Therefore, rather than storing ADFs, we can store these
minimal outlines and generate ADF glyphs dynamically
from these outlines on demand. The reduced size of these
minimal outlines is important for devices with limited
memory and for applications that transmit glyphs across a
bandwidth-limited network.

FIG. 10 shows a method 1000 for converting a two-
dimensional object, such as a glyph, to a two-dimensional
distance field. The object 1001 is represented as a set of
boundary descriptors, e.g., splines, and a fill rule, e.g., an
even-odd rule or a non-zero winding rule.

The set of boundary descriptors are first preprocessed
1010. The preprocessing subdivides the boundary descrip-
tors to reduce their spatial extent. The boundary descriptors
can also be coalesced to reduce the cardinality of the set of
boundary descriptors. The preprocessing allows us to reduce
the number of boundary descriptors that need to be queried
for each location when determining the unsigned distance,
as described below.

A spatial hierarchy 1021, e.g., a quadtree, is constructed
1020 from the preprocessed set of boundary descriptors
1011. A cache of intersections 1031 is initialized 1030. The
cache of intersections 1031 stores locations where the
boundary descriptors intersect a set of lines, e.g., horizontal,
vertical, diagonal, etc., of the distance field, and the direction
of the intersection. This eliminates redundant computations
when determining the sign of the unsigned distances. The
intersections can be sorted by intervals.

The spatial hierarchy 1021 is then queried 1040 at a set of
locations to determine a set of distances at those locations.
The set of distances is used to construct a two-dimensional
distance field 1041. The querying invokes a distance
function, e.g., Bezier clipping, at each location to determine
an unsigned distance. The cache of intersections, the
location, and the fill rule are used to determine a sign for the
distance.

Compression via Component-Based Fonts

Significant compression for Chinese, Japanese, and
Korean fonts, which can consist of 10,000 or more glyphs,
can be achieved by using a component-based representation

10

15

20

25

30

35

40

45

50

55

60

65

8

as in Font Fusion. That representation decomposes glyphs
into common strokes and radicals, i.e., complex shapes
common to multiple glyphs, stores the strokes and radicals
in a font library, and then recombines them in the font
rendering engine.

Because distance fields are an implicit representation,
ADFs can be easily combined using blending or CSG
operations, and thus are well suited for compression via that
component-based approach.

Representing Corners in a Two Dimensional Distance
Field

Detail-directed sampling with a bilinear or bi-quadratic
reconstruction method allows ADFs to represent relatively
smooth sections of a boundary of a two-dimensional object
with a small number of distance values. However, near
corners, the distance field has a high variance that is not well
approximated by these reconstruction methods. In order to
represent the distance field near corners accurately, such
ADFs require cells containing corners to be highly
subdivided, significantly increasing memory requirements.
In addition, a maximum subdivision level of the ADF,
imposed during ADF generation as described in Perry et al.,
limits the accuracy with which corners can be represented
using bilinear and bi-quadratic ADF cells.

To address this problem, our invention provides a method
1300 as shown in FIG. 13 for generating a two-dimensional
distance field within a cell associated with a corner of a
two-dimensional object, such as a glyph.

The method 1300 determines 1310 an ordered set of
boundary descriptors 1311 from the two-dimensional object
and identifies 1320 a corner point 1321 within a cell from the
ordered set of boundary descriptors 1311. The cell is then
partitioned 1330 into two regions, a first region nearest the
corner and a second region nearest the boundary of the
object. The method 1300 also specifies 1340 a reconstruc-
tion method and a set of sampled distance values 1371 for
reconstructing distances within the cell and stores 1380 the
corner point 1321, lines delimiting the regions, the recon-
struction method, and the set of sampled distance values
1371 in a memory.

The reconstruction method determines a distance at a
point within the cell according to which region the point lies
in. A distance for a query point in the first region is
determined as the distance from the query point to the corner
point.

For determining distances in the second region, we par-
tition 1350 the ordered set of boundary descriptors 1311 into
two subsets, one comprising boundary descriptors before the
corner point 1321 and one comprising boundary descriptors
after the corner point 1321. Each subset of boundary
descriptors is then extended 1360 to form an extended curve
that partitions the cell into an interior and exterior section.
For each section, the distance field within the cell can be
reconstructed from the set of sample distance values 1371
that are determined 1370 from the corresponding extended
curve. A bi-quadratic reconstruction method would require
that nine distance values be stored for each of the two
extended curves.

Note that the intersection of the two interior sections
forms the corner of the object. Hence, distances within the
second region can be determined by reconstructing a dis-
tance to the first interior section and a distance to the second
interior section and then selecting the minimum of the two
determined distances.

The two regions can be specified from two directed lines
passing through the corner point, each line perpendicular to
one of the two subsets of boundary descriptors. Each line

US 6,982,724 B2

9

can be specified by the corner point and the outward facing
normal of the corresponding subset of boundary descriptors
at the corner point. When a line is thus defined, we can
determine which side of the line a query point lies on by
determining a cross product of a vector from the query point
to the corner point and the outward facing normal. Points
lying on the exterior side of both lines lie in the first region
while points lying on the interior side of either line lie in the
second region.

Font Rendering

In today’s font rendering engines, fonts are predominantly
represented as outlines, which are scaled as needed to match
the desired output size. While most high-resolution printers
use bi-level rendering, modern display devices more com-
monly use grayscale rendering or a combination of grayscale
and bi-level rendering at small point sizes.

A common approach for rasterizing grayscale glyphs
involves scaling and hinting their outlines. The scaled and
hinted outlines are scan converted to a high-resolution
image, typically four or sixteen times larger than the desired
resolution. Then, the high-resolution image is down-
sampled by applying a filtering method, e.g., a box filter, to
produce the final grayscale image.

For body type, individual glyphs can be rasterized once
and stored in a cache as a grayscale bitmap for reuse in a
preprocessing step. The need for sub-pixel placement of a
glyph may require several versions of each glyph to be
rasterized. Use of a cache for body type permits higher
quality rendering with short delays, e.g., %2 second, during
tasks such as paging through an Adobe Acrobat PDF docu-
ment.

However, type rendered on arbitrary paths and animated
type precludes the use of a cache and therefore must be
generated on demand. Real-time rendering requirements
force the use of lower resolution filtering, typically four
samples per pixel and box filtering. This can cause spatial
and temporal aliasing. The aliasing can be reduced using
hinted device fonts residing in system memory. However,
maintaining real-time frame rates places severe constraints
on how hinted device fonts can be used, e.g., hinted device
fonts cannot be scaled or rotated dynamically.

Recent work at Microsoft on ClearType has led to special
treatment for LCD color displays that contain a repeating
pattern of addressable colored sub-pixels, i.e., components.
Platt, in “Optimal Filtering for Patterned Displays,” IEEFE
Signal Processing Letters, 7(7), pp. 179-180, 2000,
describes a set of perceptually optimal filters for each color
component. In practice, the optimal filters are implemented
as a set of three displaced box filters, one for each color.

ClearType uses prior art coverage based antialiasing
methods to determine the intensity of each component of
each pixel. In contrast, our distance field based method uses
the distance field to determine the intensity of each compo-
nent of each pixel, and does so using fewer samples. Our
ADF antialiasing method described below can replace the
box filters to provide better emulation of the optimal filters
with fewer samples per pixel.

Antialiasing

Understanding appearance artifacts in rendered fonts
requires an understanding of aliasing. Typically, a pixel is
composed of discrete components, e.g., a red, green, and
blue component in a color printer or display. In a grayscale
device, the pixel is a single discrete component. Because
pixels are discrete, rendering to an output device is inher-
ently a sampling process. The sampling rate is dependent on
the resolution of the device. Unless the sampling rate is at
least twice the highest (Nyquist) frequency in the source
signal, the sampled signal exhibits aliasing.

10

15

20

25

30

35

40

45

50

55

60

65

10

Edges, e.g., glyph outlines, have infinite frequency com-
ponents. Hence, edges cannot be represented exactly by
sampled data. Inadequate sampling of edges results in
jaggies, which tend to crawl along the sampled edges in
moving images. If the source signal also contains a spatial
pattern, e.g., the repeated vertical stems of an ‘m’ or the
single vertical stem of an ‘i’, whose frequency components
are too high for the sampling rate, then the sampled data can
exhibit dropout, moiré patterns, and temporal flicker.

To avoid aliasing, the input signal must be pre-filtered to
remove frequency components above those permitted by the
sampling rate. In general, there are two approaches to
pre-filtering.

The first is known as analytic filtering. It applies some
form of spatial averaging to a continuous representation of
the source signal before sampling. Unfortunately, analytic
filtering is often not possible, either because the source data
are not provided as a continuous signal, which is the normal
case for image processing, or because determining an ana-
Iytic description of the signal within the filter footprint is too
complex. This is the case for all but simple geometric shapes
in computer graphics and certainly the case for spline-based
outlines.

The second approach is known as discrete filtering. In that
approach, the source signal is typically sampled at a higher
rate than the target rate to obtain a supersampled image.
Then, a discrete filter is applied to reduce high frequencies
in the supersampled image before down-sampling the image
to the target rate. The discrete approach is referred to as
regular supersampling in computer graphics.

Various discrete filters can be applied depending on the
processing budget, hardware considerations, and personal
preferences for contrast versus smoothness in the output
image. The box filter typically used to render type simply
replaces a rectangular array of supersampled values with
their arithmetic average and is generally regarded as inferior
in the signal processing community.

In another approach, adaptive supersampling focuses
available resources for sampling and filtering on areas of the
image with higher local frequency components. Optimal
adaptive sampling can be determined from the local vari-
ability in the image. However, the usefulness of this tech-
nique is limited by the need to estimate the local variance of
the image, a process that can be computationally expensive.

Moiré patterns, due to inadequate regular sampling of
high frequency patterns, are particularly objectionable to the
human visual system. In general image processing, stochas-
tic or jittered sampling has been used to solve this problem.
With stochastic sampling, the samples are randomly dis-
placed slightly from their nominal positions. Stochastic
sampling tends to replace moiré pattern aliasing with high
frequency noise and has been shown to be particularly
effective in reducing temporal aliasing.

Rendering with Distance-based Antialiasing

The infinite frequency components introduced by edges of
a glyph are a major contribution to aliasing in prior art font
rendering. In contrast, by using 2D distance fields to repre-
sent 2D objects and then sampling the 2D distance fields
according to the invention, we avoid such edges because the
representation is C° continuous. Instead, a maximum fre-
quency depends on a spatial pattern of the glyph itself, e.g.,
the repeated vertical stems of an ‘m’ or the single vertical
stem of an ‘i’

By representing the glyph by its 2D distance field, we are
effectively applying an analytic pre-filter to the glyph. Our
antialiasing methods for rendering distance fields as
described below yield an output that is different from the
output of a conventional analytic pre-filter.

US 6,982,724 B2

11

Antialiasing with Distance Fields

FIG. 4 shows a method 400 for antialiasing, in image-
order, an object 401, e.g., a glyph, represented 410 as a
two-dimensional distance field 411. Each pixel 402 can
include one or more components 404, typically a red, blue,
and green component for a ‘RGB’ type of output device.
This method can use one or more samples for each compo-
nent 404 of each pixel 402. The method 400 provides
adaptive distance-based super sampling, distance-based
automatic hinting, and distance-based grid fitting. The
resulting antialiased pixel intensity can be rendered on CRT
and LCD-like displays as part of an image. The method is
particularly useful for rendering motion blur.

A set 403 of sample points 407 in the two-dimensional
distance field 411 representing the object 401 is associated
420 with each component 404 of each pixel 402. A distance
(D) 405 is determined 430 from the two-dimensional dis-
tance field 411 and the set of sample points 403. Then, the
distance 405 is mapped 440 to an antialiased intensity (I)
406 of the component 404 of the pixel 402.

In the preferred embodiment, the glyph 401 is represented
410 by a bi-quadratic ADF 411, as described above. This
makes it efficient to apply distance-based antialiasing during
font rendering. Other representations such as a two-
dimensional distance map, a two-dimensional distance shell,
and a procedural distance field can also be used.

For each component 404 of each pixel 402 in an image,
a cell, e.g., a leaf cell, containing the component 404 is
located using a quadtree traversal method described in U.S.
patent application Ser. No. 10/209,302, filed on Jul. 31, 2002
and titled “Method for Traversing Quadtrees, Octrees, and
N-Dimensional Bi-trees,” incorporated herein by reference
in its entirety. Although other traversal methods known in
the art can be used with our invention, the aforementioned
method is comparison-free and therefore executes effi-
ciently. The distance at the component 404 is reconstructed
from the cell’s distance values and mapped 440 to the
antialiased intensity (I) 406.

Different mappings can be used, including linear,
Gaussian, and sigmoidal functions. Selection of the best
mapping function is subjective. In one embodiment, our
mapping is a composition of two functions. The first func-
tion is as described above, the second is a contrast enhance-
ment function. These two functions are composed to map
440 the distance field (D) 405 to the antialiased intensity (I)
406 of the component 404.

FIG. 5 shows a linear mapping 500 of intensity 501, ¢.g.,
[0,1], as a function of distance 502. The mapping converts
a distance to an antialiased image intensity for each com-
ponent of the pixel. Distances are positive inside the object
and negative outside the object. Different cutoff values 503
and 504 affect the edge contrast and stroke weight. We
achieve good results with outside 503 and inside 504 filter
cutoff values of (-0.75, 0.75) pixels for display type, and
(-0.5, 0.625) pixels for body type.

Optimal Distance-based Adaptive Supersampling

The above described distance-based antialiasing method
reduces aliasing due to glyph edges. However, aliasing
artifacts still occur when stem widths or spacing between
glyph components are too small for the display’s sampling
rate. In such cases, we apply distance-based adaptive super-
sampling as described below to further reduce spatial and
temporal aliasing.

In the preferred embodiment, we use bi-quadratic ADFs
with our novel distance-based adaptive supersampling to
provide significant advantages over prior art outline-based
representations and coverage-based adaptive supersampling

10

15

20

25

30

35

40

45

50

55

60

65

12

methods. Because ADFs use detail-directed sampling,
regions of the distance field with higher local variance are
represented by smaller leaf cells. Hence, the structure of the
ADF quadtree provides the map of local variance required to
implement optimal distance-based adaptive sampling, over-
coming the difficulty in the prior art adaptive supersampling
antialiasing methods of determining the local variance as
described above.

For each component 404 of each pixel 402 in the image,
the cell containing the component 404 is located, and a set
403 of sample points 407 within a filter radius, r, of the
component is associated 420 with the pixel component 404.
The number of sample points 407 per component (spc)
depends on the relative size of the cell (cellSize) to r.
Sampled distances at the sample points 407 are filtered to
determine 430 a single weighted average distance 405 that
is then mapped 440 to an antialiased intensity 406 of the
component 404 of the pixel 402.

Various filters and sampling strategies are possible. In the
preferred embodiment we use a general form of a Gaussian
filter, weighting each distance sample by W'27>@"" where
d is the distance from the sample point to the component of
the pixel and W is the sum of the weights used for that
component. Similar results can be obtained with box filters,
cone filters, negative lobe filters, and other forms of the
Gaussian filter.

FIG. 6 A—C shows our sampling strategy. Samples 407 are
placed in concentric circles 610 near the component 601 for
efficient computation of the weights and weight sums. We
use a filter radius r 602 of 1.3 times the inter-pixel spacing
and sample with 1 spc when cellSize>r (FIG. 6A), 5 spc
when r/2<cellSize=r (FIG. 6B), and 13 spc when cellSize
=172 (FIG. 6C).

Rather than concentric circles, the invention can use
numerous other strategies to associate sample points 407
with pixel components 404. Our method is not particularly
sensitive to the exact sampling strategy.

Another adaptive sampling strategy, described below,
places sample points at the centers of all the cells contained
within the filter radius r. This strategy has equally good
results.

Cell-Based Antialiasing

The distance field antialiasing methods described above
can be implemented in software using scanline-based ras-
terization. Alternatively, distance fields partitioned into cells
can be antialiased cell-by-cell, i.e., in object-order. Cell-
based rendering eliminates tree traversal for locating cells
containing the sample points, eliminates redundant setup for
computing distances and gradients within a single cell, and
reduces repeated retrieval, i.e., memory fetches, of cell data.

In addition, because the cells required for rendering can
be represented as a sequential block of fixed sized, self-
contained units, i.e., distances and gradients for points
within a cell are determined from the cell’s distance values,
our cell-based approach is amenable to hardware
implementations, enabling real-time rendering.

FIG. 7 shows a method 700 for antialiasing an object 701,
e.g., a glyph, represented 710 as a two-dimensional distance
field 711 in object-order. The method 700 provides adaptive
distance-based super sampling, distance-based automatic
hinting, and distance-based grid fitting. The resulting anti-
aliased pixel intensity can be rendered on CRT and LCD-like
displays as part of an image. The method is particularly
useful for rendering motion blur. We can use mipmapping
when the cells of the two-dimensional distance fields 711 are
organized in a spatial hierarchy to reduce the number of
distance samples required.

US 6,982,724 B2

13

The two-dimensional distance field 711 is partitioned into
cells 712. In a preferred embodiment where we use
bi-quadratic, adaptively sampled distance fields, the size of
each cell is dependent on a local variance of the two-
dimensional distance field. Each cell includes a method (M)
713 for reconstructing the two-dimensional distance field
within the cell. A set of cells 721 containing a region (dashed
line) 722 of the distance field to be rendered is identified
720.

The region 722 is used to locate 730 a set of pixels 731
associated with the region. A set of components 741 for each
pixel in the set of pixels 731 is specified 740. Then,
antialiased intensities 751 are determined 750 for each
component of each pixel from distances in the set of cells.
Here, the distances are reconstructed from the set of cells.
The distances are then mapped to the antialiased intensity, as
described above.

In one embodiment, we can determine the distance by
locating a single sample point within the set of cells near the
component of the pixel and reconstructing the distance at the
single sample point from the set of cells. In our preferred
embodiment where we use bi-quadratic adaptively sampled
distance fields, this approach is augmented with a special
treatment of cells smaller than the filter radius for adaptive
distance-based supersampling. Because small cells occur
where there is high variance in the distance field, distances
in pixels near these cells can be pre-filtered before mapping
the distances to intensity.

We initialize a compositing buffer of elements, where
each element corresponds to a component of each pixel of
the set of pixels. Each cell in the set of cells can be processed
independently. In the preferred embodiment, each element
consists of a weighted distance and an accumulated weight
which are both initialized to zero. When a cell is processed,
these weighted distances and accumulated weights are incre-
mented in the buffer elements that correspond to pixel
components which lie either within the cell or within a filter
radius of the cell’s center.

After processing all the cells, the weighted distances are
normalized by the accumulated weight for each component
of each pixel to produce the distance that is then mapped to
the antialiased component intensity. In the preferred
embodiment, we use the same Gaussian weights and filter
radius as described above.

Our cell-based rendering described thus far always pro-
cesses every leaf cell in the set of cells, regardless of the
relative sizes of each cell to the filter radius. In theory, this
provides optimal adaptive distance-based supersampling. In
practice, the ADF quadtree can be used as a mipmap to
reduce the number of cells.

The ADF quadtree structure allows us to replace small
leaf cells with their ancestors, effectively truncating the
quadtree at some predetermined cell size. As long as this cell
size is less than or equal to ¥ of the inter-pixel spacing, there
is no visual degradation in the adaptive distance-based
supersampling results. This reduces the number of cells to
render the region.

Processing Pixel Components

Apixel comprises one or more components. For example,
pixels on a typical CRT or LCD color monitor comprise a
red, a green, and a blue component. In our invention, when
the pixel comprises a plurality of components, they can be
treated independently, as described above, or processed as a
single component. When the plurality of components is
processed as a single component, a color and an alpha value
of the pixel can be determined from the antialiased intensity
of the single component.

10

15

20

25

30

35

40

45

50

55

60

65

14

There are two reasons to process the plurality of compo-
nents as a single component. First, it reduces rendering
times. Second, when the plurality of components cannot be
addressed individually or when the relative positions of the
individual components are not known, individual treatment
of each component is not possible.

When display devices, such as LCDs, have addressable
pixel components, it is known in the art that processing the
plurality of components independently can increase the
effective resolution of the device. Our invention can exploit
this feature of such devices to provide distance-based anti-
aliasing with superior quality over the prior art.

Animating Two-Dimensional Objects

FIG. 12 shows a flow diagram of a method 1200 for
animating an object 1201 as a sequence of frames according
to an animation script 1202. The animation script 1202
directs conditions of the object, e.g., the position, size,
orientation, and deformation of the object, for each frame in
the sequence of frames. The object is represented as a
two-dimensional distance field. A pose 1211 of the object
1201 is updated 1210 for each frame in the sequence of
frames 1221 according to the animation script 1202. The
object 1201 is rendered using the updated pose 1211 and a
distance-based antialiasing rendering method 1212.

The two-dimensional distance field representing the
object 1201 can be acquired from a different representation
of the object, e.g., an outline description of the object or a
bitmap description of the object.

The updating 1210 of the pose 1211 for a particular object
1201 can be performed by applying various operations to the
object including a rigid body transformation, a free-form
deformation, a soft-body impact deformation, a level-set
method, a particle simulation, and a change to its rendering
attributes.

When rendering 1220 the object, we associate a set of
sample points in the two-dimensional distance field repre-
senting the object with a component of a pixel in a frame in
the sequence of frames 1221. By determining a distance
from the two-dimensional distance field and the set of
sample points, we can map the distance to an antialiased
intensity of the component of the pixel.

In a preferred embodiment, we partition the two-
dimensional distance field representing the object 1201 into
cells, each cell including a method for reconstructing the
two-dimensional distance field within the cell. To render
1220 in this instance, we identify a set of cells of the
two-dimensional distance field representing the object 1201
that contains a region of the two-dimensional distance field
to be rendered and locate a set of pixels associated with the
region. A set of components for each pixel in the set of pixels
is specified. A distance for each component of the pixel is
determined from the set of cells and the distance is mapped
to the antialiased intensity of the component of the pixel to
determine an antialiased intensity for each component of
each pixel in the set of pixels.

Distance-based Automatic Hinting

Hinting in standard font representations is a time-
consuming manual process in which a type designer and
hinting specialist generate a set of rules for better fitting
individual glyphs to the pixel grid. Good hinting produces
glyphs at small type sizes that are well spaced, have good
contrast, and are uniform in appearance.

These rules provide: vertical stems with the same contrast
distribution, with the left and bottom edges having the
sharpest possible contrast; diagonal bars and thin, rounded
parts of glyphs to have sufficient contrast for transmitting
visual structure to the eye; and serifs that hold together and

US 6,982,724 B2

15

provide enough emphasis to be captured by the human eye,
see Hersch et al., “Perceptually Tuned Generation of Gray-
scale Fonts,” IEEE CG&A, Nov, pp. 78-89, 1995.

Note that prior art filtering methods produce fuzzy char-
acters and assign different contrast profiles to different
character parts, thus violating important rules of type design.
To overcome these limitations, hints are developed for each
glyph of each font. There are numerous problems with prior
art hinting methods: they are labor intensive to develop,
slow to render, and complex thus precluding hardware
implementations.

For outline-based fonts, rendering with hints is a three
step process. First, the glyph’s outlines are scaled and
aligned to the pixel grid. Second, the outlines are modified
to control contrast of stems, bars, and serifs and to increase
the thickness of very thin sections and arcs. Third, the
modified outlines are supersampled followed by down-
sampling with filtering.

Although our unhinted distance-based antialiasing ren-
dering methods described above compare favorably with
prior art font rendering methods that use hinting, it is known
that perceptual hinting can improve reading comfort at small
type sizes.

Therefore, as shown in FIG. 8, we exploit the distance
field to provide distance-based automatic hinting 800 for
rendering glyphs at small point sizes. The first step 810 in
hinting is to scale and align the distance field to the pixel
grid. This can be done automatically from the given or
derived font metrics, e.g., the cap-height, the x-height, and
the position of the baseline.

After applying this form of grid fitting, we use the
distance field and its gradient field to provide perceptual
hints.

In one embodiment, the direction of the gradient of the
distance field is used to detect 820 pixels on the left and
bottom edges of the object. By darkening 830 these pixels
and lightening 840 pixels on opposite edges, we achieve
higher contrast on left and bottom edges without changing
the apparent stroke weight. This can be done by decreasing
and increasing the corresponding pixel intensities.

In another embodiment, the gradient field is used to
provide better contrast for diagonal stems and thin arcs. We
note that when a pixel is located on or near thin regions of
the glyph, neighbors on either side of the pixel have opposite
gradient directions, i.e., their dot products are negative. By
detecting abrupt changes in gradient directions, we can
darken 850 pixels on these thin regions.

These are only two examples of how the distance field can
be used to provide perceptual hints automatically. The
distance field can also be used to provide optimal character
spacing and uniform stroke weight.

Generating and Editing Fonts

There are two basic methods for designing fonts. The first
is manual. There, glyphs are drawn by hand, digitized, and
then outlines are fit to the digitized bitmaps. The second is
by computer.

In the latter case, three types of tools are available. Direct
visual tools can be used for curve manipulation. Procedural
design tools construct the shape of a glyph by executing the
instructions of a procedure. The procedure defines either a
shape’s outline and fills it, or defines a path stroked by a pen
nib with numerous attributes, including a geometry and an
orientation. Component-based design tools allow designers
to build basic components such as stems, arcs, and other
recurring shapes, and then combine the components to
generate glyphs.

We use a sculpting editor to provide stroke-based design.
This is the 2D counterpart to 3D carving as described in U.S.

10

15

20

25

30

35

40

45

50

55

60

65

16
patent application Ser. No. 09/810,261, “System and
Method for Sculpting Digital Models,” filed on Mar. 16,
2001, incorporated herein by reference. Stroking can be
done interactively or it can be scripted to emulate program-
mable design tools.

Curve-based design, using Bezier curve manipulation
tools similar to those in Adobe Illustrator can also be used.
Curve-based design can be combined with methods for
converting outlines to distance fields and distance fields to
outlines to provide a seamless interface between design
paradigms.

Component-based design uses CSG and blending opera-
tions on the implicit distance field. This allows components
to be designed separately and combined either during editing
or during rendering.

We also provide a method for automatically generating
ADFs from analog and digital font masters.

For component-based design, our font editor provides the
ability to efficiently reflect and rotate ADFs using quadtree
manipulation to model the symmetries common in glyphs.
Additional features include ADF scaling, translation, and
operations to combine multiple ADFs, e¢.g., CSG and blend-
ing.

For stroke-based design, we provide carving tools with a
geometric profile to emulate pen nibs. The orientation and
size of the simulated pen nib can change along the stroke to
mimic calligraphy.

FIG. 9 shows a method 900 for generating a two-
dimensional distance field 931 from a pen stroke. We sample
a pen state during a pen stroke, the pen state comprising a
location of the pen during the stroke. This pen state may also
include orientation and geometry. From the pen state
samples 901, we generate 910 an ordered list 911 of pen
states along the pen stroke. Then, a set of boundary descrip-
tors 921 is generated 920 from the ordered list of pen states.
Finally, we generate 930 a two-dimensional distance field
931 from the set of boundary descriptors 921.

In the preferred embodiment, the boundary descriptors
921 are curves such as cubic Bezier curves.

In the preferred embodiment, we apply a curve fitting
process to fit a minimum set of G* continuous curves to the
path of the pen, with user-specified accuracy. We also
generate two additional ordered lists of offset points from
this path using the tool size and orientation, and fit curves to
these offset points to generate the stroke outlines. The
outline curves are placed in a spatial hierarchy for efficient
processing. We generate a two-dimensional ADF from this
hierarchy using a tiled generator, see U.S. patent application
Ser. No. 09/810,983, filed on Mar. 16, 2001, and incorpo-
rated herein by reference.

The minimum distance to the outlines is computed effi-
ciently using Bezier clipping. Strokes are converted to ADFs
without a perceptual delay for the user. For curve
manipulation, we provide a Bezier curve editor.

As shown in FIG. 11, we also provide the ability to
convert distance fields to boundary descriptors, e.g., Bezier
curves, to provide a seamless interface between all three
design paradigms.

In the preferred embodiment, we use bi-quadratic ADFs
where this conversion traverses the leaf cells using the ADF
hierarchy for fast neighbor searching, generates an ordered
list of points along the zero-valued iso-contours of the ADF,
and then fits curves as described with reference to FIG. 11,
below, to generate the boundary descriptors.

In contrast with the prior art, where boundary descriptor
errors are computed from the list of points, we compute the
boundary descriptor error directly from the distance field.
We pay special attention to sharp corners. Our approach is

US 6,982,724 B2

17

fast enough to allow users to seamlessly switch between
paradigms without any noticeable delay.

FIG. 11 shows a method 1100 for converting a two-
dimensional distance field 1101 to a set of boundary descrip-
tors 1131. First, we select 1110 an iso-contour 1111 of the
two-dimensional distance field 1101, e.g., distances with a
zero value, or some offset.

Next, we generate 1120 an ordered list of points 1121
from the iso-contour 1111 and the two-dimensional distance
field 1101. In our preferred embodiment using bi-quadratic
adaptively sampled distance fields, this step visits neighbor-
ing cells of the adaptively sampled distance field 1101
sequentially using a neighbor searching technique. The
search technique exploits a spatial hierarchy of the adap-
tively sampled distance field 1101 to efficiently localize a
next neighbor along the iso-contour 1111.

In another embodiment, we generate 1120 an ordered list
of points 1121 by selecting boundary cells in the ADF 1101,
seeding each boundary cell with a set of ordered points, and
moving each point to the iso-contour 1111 of the ADF 1101
using a distance field and a gradient field of the ADF 1101.

Then, we initialize 1130 a set of boundary descriptors
1131 to fit the ordered list of points 1121. The boundary
descriptors 1131 are initialized 1130 by joining adjacent
points of the ordered list of points 1121 to form a set of line
segments that constitute the initial boundary descriptors
1131.

In another embodiment, we initialize 1130 a set of bound-
ary descriptors 1131 by locating corner points, subdividing
the ordered list of points into segments delimited by the
corner points, and determining segment boundary descrip-
tors to fit each segment. The union of the segment boundary
descriptors forms the initial boundary descriptors 1131.

Corner points can be located by measuring curvature
determined from the distance field. In the preferred
embodiment, where the distance field is a bi-quadratic ADF,
regions of high curvature are represented by small cells in
the ADF and hence corner points can be located by using
ADF cell sizes.

Once the boundary descriptors 1131 are initialized 1130,
the boundary descriptors 1131 are updated 1140. The updat-
ing 1140 determines an error for each boundary descriptor
by reconstructing the distance field and measuring the
average or maximum deviation of the boundary descriptor
from the iso-contour.

The boundary descriptors 1131 are updated 1140 until the
error for each boundary descriptor is acceptable, or a pre-
determined amount of time has elapsed, or a cardinality of
the set of boundary descriptors 1131 is minimal.

To incorporate the existing legacy of fonts stored in
non-digital form, i.e., as analog masters, or in digital form as
bitmaps, i.e., as digital masters, our editing system provides
a method for generating ADFs from high-resolution bi-level
bitmaps.

Analog masters are first scanned to produce bi-level
digital masters at a resolution at least four times higher than
the target ADF resolution, e.g., a 4096x4096 digital master
is adequate for today’s display resolutions and display sizes.
An exact Euclidean distance transform is then applied to the
bitmap to generate a regularly sampled distance field rep-
resenting the glyph.

Then, we generate an ADF from this regularly sampled
distance field using the tiled generator. Conversion from the
bitmap to the ADF requires ~10 seconds per glyph on a 2
GHz Pentium IV processor.

To convert from existing prior art descriptors of glyphs to
distance fields where the glyphs are described with a set of
boundary descriptors, we apply the method described with
reference to FIG. 10.

Computational Substrate for Kinetic Typography

The distance field and the spatial hierarchy attributes of
our ADF glyph framework can also be used for computer

10

15

20

25

30

35

40

45

50

55

60

65

18

simulation of 2D objects, e.g., glyphs, corporate logos, or
any 2D shape. For example, both attributes can be used in
collision detection and avoidance, for computing forces
between interpenetrating bodies, and for modeling soft body
deformation.

Level set methods, which use signed distance fields, can
be used to model numerous effects such as melting and fluid
dynamics. ADFs are a compact implicit representation that
can be efficiently queried to compute distance values and
gradients, two important computations required for the
methods listed above.

In contrast, determining distance values and gradients
from outlines that are moving or deforming is impractical in
software for real-time interaction, see Hoff et al., “Fast and
Simple 2D Geometric Proximity Queries Using Graphics
Hardware,” Proc. Interactive 3D Graphics’01, 2001. Hoff et
al. use graphics hardware to generate a regularly sampled 2D
distance field on the fly for deforming curves approximated
by line segments.

The implicit nature of the distance field permits complex
topological changes, such as surface offsets that would be
difficult to model with outline-based fonts. In addition,
distance fields can be used to provide non-photorealistic
rendering of an animated object to add artistic effect.

Effect of the Invention

The invention provides a novel framework for
representing, rendering, editing, and animating character
glyphs, corporate logos, or any two-dimensional object. In a
preferred embodiment, the invention uses two-dimensional
bi-quadratic ADFs to represent two-dimensional objects.
The bi-quadratic reconstruction method provides an optimal
balance between memory use and computational load.

The invention includes a method for generating a two-
dimensional distance field within a cell enclosing a corner of
a two-dimensional object. This method provides a signifi-
cant reduction in memory requirements and a significant
improvement in accuracy over the prior art.

Our distance-based antialiasing rendering methods pro-
vide better antialiasing using a single unhinted distance
sample per pixel than the supersampling methods used in the
prior art.

Our distance-based methods exploit the spatial hierarchy
of ADFs to provide efficient optimal adaptive distance-based
supersampling resulting in superior spatial and temporal
antialiasing. Our methods also provide a computational
substrate for distance-based automatic hinting, for distance-
based grid fitting, for unifying three common digital font
design paradigms, and for generating a variety of special
effects for kinetic typography.

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications can be
made within the spirit and scope of the invention. Therefore,
it is the object of the appended claims to cover all such
variations and modifications as come within the true spirit
and scope of the invention.

We claim:

1. Amethod for antialiasing a region of a two-dimensional
distance field representing an object, wherein the two-
dimensional distance field is partitioned into cells, each cell
including a method for reconstructing the two-dimensional
distance field within the cell, comprising:

identifying a set of cells of a two-dimensional distance

field representing an object, the set of cells associated
with a region of the two-dimensional distance field to
be rendered;

locating a set of pixels associated with the region;

specifying a set of components for each pixel in the set of

pixels; and

determining an antialiased intensity for each component

of each pixel in the set of pixels, the determining
further comprising:

US 6,982,724 B2

19

determining a distance for the component of the pixel
from the set of cells; and

mapping the distance to the antialiased intensity of the
component of the pixel.

2. The method of claim 1 wherein the two-dimensional
distance field is a two-dimensional distance map.

3. The method of claim 1 wherein the two-dimensional
distance field is a two-dimensional distance shell.

4. The method of claim 1 wherein the two-dimensional
distance field comprises a set of distances stored in a
memory.

5. The method of claim 2, 3, or 4 wherein each cell of the
two-dimensional distance field comprises a set of spatially
related sampled distances and the method for reconstructing
the two-dimensional distance field within the cell recon-
structs the distance at a location within the cell from the
sampled distances.

6. The method of claim § wherein the set of spatially
related sampled distances are located at vertices of a quad-
rilateral and the method for reconstructing the two-
dimensional distance field within the cell is bilinear inter-
polation.

7. The method of claim § wherein the method for recon-
structing the two-dimensional distance field within the cell
is bi-quadratic interpolation.

8. The method of claim 2, 3, or 4 wherein the method for
reconstructing the two-dimensional distance field within
each cell of the two-dimensional distance field is a proce-
dure.

9. The method of claim 1 wherein the two-dimensional
distance field is a two-dimensional adaptively sampled dis-
tance field.

10. The method of claim 1 wherein a union of the set of
cells contains the region.

11. The method of claim 10 wherein the union includes
other cells with centers within a specified distance from the
region.

12. The method of claim 10 wherein the cells of the
two-dimensional distance field are organized in a spatial
hierarchy.

13. The method of claim 12 wherein each cell in the set
of cells is a leaf cell in the spatial hierarchy.

14. The method of claim 12 wherein each cell in the set
of cells has a size that is larger than a value determined from
a distance between pixels in the set of pixels.

15. The method of claim 1 wherein the set of cells are
located near the region.

16. The method of claim 1 wherein the set of pixels is
located by transforming the region into an image space and
determining image pixels within the transformed region.

17. The method of claim 1 wherein the image pixels are
determined by rasterizing the transformed region.

18. The method of claim 1 wherein the region is an area
determined from a subset of the cells of the two-dimensional
distance field.

19. The method of claim 1 wherein the region is an area
covered by a subset of the cells of the two-dimensional
distance field.

20. The method of claim 1 wherein the specifying of the
set of components for each pixel in the set of pixels is
determined from characteristics of a display device com-
prising the set of pixels.

21. The method of claim 20 wherein the characteristics of
the display device include a cardinality of the set of com-
ponents for each pixel.

22. The method of claim 20 wherein the characteristics of
the display device include a spatial layout of the set of
components for each pixel.

w

15

20

25

30

35

40

45

50

55

60

65

20

23. The method of claim 20 wherein the characteristics of
the display device include a descriptor for each component
in the set of components for each pixel.

24. The method of claim 1 wherein the determining of the
distance further comprises:

locating a single sample point within the set of cells near

the component of the pixel; and

reconstructing the distance at the single sample point from

the set of cells.

25. The method of claim 1 wherein the determining of the
distance further comprises:

initializing a compositing buffer of elements, each ele-

ment corresponding to a component of each pixel of the
set of pixels;

processing each cell in the set of cells independently, the

processing of each cell updating a set of the elements
in the compositing buffer; and

processing each element in the compositing buffer to

determine the distance of the corresponding component
of each pixel of the set of pixels.
26. The method of claim 25 wherein each element of the
compositing buffer includes a weighted distance.
27. The method of claim 25 wherein each element of the
compositing buffer comprises an accumulated weight.
28. The method of claim 25 wherein the processing of
each cell further comprises:
determining a set of pixel components for the cell, the set
of pixel components being a subset of the sets of
components for each pixel in the set of pixels;

reconstructing a sample distance from the cell corre-
sponding to each pixel component in the set of pixel
components;

determining a sample weight for each pixel component in

the set of pixel components; and

updating the element in the compositing buffer corre-

sponding to each pixel component in the set of pixel
components with the sample weight and the sample
distance.

29. The method of claim 28 wherein the set of pixel
components is determined by locating pixel components
within the cell.

30. The method of claim 28 wherein the set of pixel
components is determined by locating pixel components
within a specified distance from a center of the cell.

31. The method of claim 28 wherein the updating accu-
mulates the sample weight into an accumulated weight of
the element in the compositing buffer.

32. The method of claim 28 wherein the updating accu-
mulates the sample distance into a weighted distance of the
element in the compositing buffer.

33. The method of claim 28 wherein the sample weight for
a pixel component in the set of pixel components is a
constant value.

34. The method of claim 28 wherein the sample weight for
a pixel component in the set of pixel components is deter-
mined from a second distance derived from a location of the
cell and a position of the pixel component.

35. The method of claim 34 wherein the sample weight for
the pixel component is a linear function of the second
distance.

36. The method of claim 34 wherein the sample weight for
the pixel component is a Gaussian function of the second
distance.

37. The method of claim 25 wherein the processing of
each element in the compositing buffer further comprises:

determining a weighted average from a weighted distance

and an accumulated weight of the element of the
compositing buffer to determine the distance.

US 6,982,724 B2

21

38. The method of claim 1 wherein the determining of the
distance is an evaluation of an analytic function over an area
of the two-dimensional distance field near the component of
the pixel.

39. The method of claim 38 wherein the analytic function
is an integral over the area of the two-dimensional distance
field near the component of the pixel.

40. The method of claim 1 wherein the mapping is a
one-dimensional function relating the distance to the anti-
aliased intensity.

41. The method of claim 40 wherein the one-dimensional
function is a composition of a first function and a second
function.

42. The method of claim 41 wherein the second function
is a contrast enhancement function.

43. The method of claim 40 wherein the one-dimensional
function is linear.

44. The method of claim 40 wherein the one-dimensional
function is Gaussian.

45. The method of claim 40 wherein the one-dimensional
function determines a stroke weight of the object.

46. The method of claim 40 wherein the one-dimensional
function determines an edge contrast of the object.

47. The method of claim 1 wherein the mapping is a
one-dimensional lookup table relating the distance to the
antialiased intensity.

48. The method of claim 47 wherein each antialiased
intensity value in the one-dimensional lookup table is a
linear function of the distance.

49. The method of claim 47 wherein each antialiased
intensity value in the one-dimensional lookup table is a
Gaussian function of the distance.

50. The method of claim 47 wherein the one-dimensional
lookup table determines a stroke weight of the object.

51. The method of claim 47 wherein the one-dimensional
lookup table determines an edge contrast of the object.

52. The method of claim 1 wherein the mapping is an
N-dimensional function relating the distance to the anti-
aliased intensity.

53. The method of claim 52 wherein an argument of the
N-dimensional function is determined from a position of the
component of the pixel.

54. The method of claim 52 wherein an argument of the
N-dimensional function is determined from a gradient field
of the two-dimensional distance field near the component of
the pixel.

55. The method of claim 52 wherein an argument of the
N-dimensional function is a stroke weight of the object.

56. The method of claim 52 wherein the N-dimensional
function determines a stroke weight of the object.

57. The method of claim 52 wherein an argument of the
N-dimensional function is an edge contrast of the object.

58. The method of claim 52 wherein the N-dimensional
function determines an edge contrast of the object.

59. The method of claim 52 wherein an argument of the
N-dimensional function is a characteristic of the component
of the pixel.

60. The method of claim 52 wherein an argument of the
N-dimensional function is a position of the component of the
pixel.

61. The method of claim 1 wherein the mapping is an
N-dimensional lookup table relating the distance to the
antialiased intensity.

62. The method of claim 61 wherein an argument of the
N-dimensional lookup table is determined from a position of
the component of the pixel.

63. The method of claim 61 wherein an argument of the
N-dimensional lookup table is determined from a gradient

10

15

20

25

30

35

40

45

50

55

60

65

22

field of the two-dimensional distance field near the compo-
nent of the pixel.

64. The method of claim 61 wherein an argument of the
N-dimensional lookup table is a stroke weight of the object.

65. The method of claim 61 wherein the N-dimensional
lookup table determines a stroke weight of the object.

66. The method of claim 45, 50, 56, or 65 wherein a
position of a second object is adjusted according to the
stroke weight of the object.

67. The method of claim 61 wherein an argument of the
N-dimensional lookup table is an edge contrast of the object.

68. The method of claim 61 wherein the N-dimensional
lookup table determines an edge contrast of the object.

69. The method of claim 61 wherein an argument of the
N-dimensional lookup table is a characteristic of the com-
ponent of the pixel.

70. The method of claim 59 or 69 wherein the character-
istic of the component of the pixel is brightness.

71. The method of claim 59 or 69 wherein the character-
istic of the component of the pixel is color.

72. The method of claim 61 wherein an argument of the
N-dimensional lookup table is a position of the component
of the pixel.

73. The method of claim 1 wherein the pixel consists of
a single component.

74. The method of claim 73 wherein a color of the pixel
is determined from the antialiased intensity of the single
component of the pixel.

75. The method of claim 73 wherein a color and an alpha
value of the pixel are determined from the antialiased
intensity of the single component of the pixel.

76. The method of claim 1 wherein the pixel consists of
M components.

77. The method of claim 76 wherein the M components
are processed as a single component.

78. The method of claim 73 or 77 wherein a color of the
pixel is determined by using the antialiased intensity of the
single component of the pixel.

79. The method of claim 76 wherein positions of the M
components are predetermined and a set of the M compo-
nents is processed independently.

80. The method of claim 79 wherein a color of the pixel
is determined from the antialiased intensities of the compo-
nents in the set of the M components.

81. The method of claim 79 wherein a color and an alpha
value of the pixel are determined from the antialiased
intensities of the components in the set of the M compo-
nents.

82. The method of claim 79 wherein a color of the pixel
is determined by using the antialiased intensity of each
component of the pixel.

83. The method of claim 76 wherein the M components
comprise a red, a green, and a blue component.

84. The method of claim 76 wherein the M components
comprise a cyan, a magenta, a yellow, and a black compo-
nent.

85. The method of claim 76 wherein the M components
have different characteristics.

86. The method of claim 76 wherein positions of the M
components are predetermined.

87. The method of claim 1 wherein the distance is
modified by an N-dimensional function where one argument
of the function is a gradient field of the two-dimensional
distance field near the component of the pixel.

88. The method of claim 1 wherein the antialiased inten-
sity of the component of the pixel is modified by an
N-dimensional function where one argument of the function

US 6,982,724 B2

23

is a gradient field of the two-dimensional distance field near
the component of the pixel.

89. The method of claim 54, 63, 87, or 88 wherein the
gradient field provides automatic hinting of the object.

90. The method of claim 89 wherein the object is a
character glyph.

91. The method of claim 89 wherein the object is a logo.

92. The method of claim 89 wherein a direction of the
gradient field is used to increase contrast on selected edges
of the object.

93. The method of claim 92 wherein the selected edges are
left edges and bottom edges of the object.

94. The method of claim 89 wherein the gradient field is
used to reduce dropout near thin regions of the object.

95. The method of claim 94 wherein abrupt changes in a
direction of the gradient field are used to detect the thin
regions of the object.

96. The method of claim 54, 63, 87, or 88 wherein the
gradient field is used to render motion blur of the object.

97. The method of claim 96 wherein a similarity between
a direction of the gradient field and a direction of motion of
the object are used to render the motion blur of the object.

98. The method of claim 1 wherein the object is a
two-dimensional character glyph and the two-dimensional
distance field includes a set of attributes, further comprising:

modifying the two-dimensional distance field according

to the set of attributes.

99. The method of claim 98 wherein an attribute in the set
of attributes is a stroke weight of the two-dimensional
character glyph.

100. The method of claim 98 wherein an attribute in the
set of attributes is a baseline of the two-dimensional char-
acter glyph.

101. The method of claim 100 wherein the baseline is
determined from the two-dimensional distance field.

102. The method of claim 98 wherein the modifying
scales the two-dimensional distance field.

103. The method of claim 98 the modifying translates the
two-dimensional distance field.

104. The method of claim 98 wherein the modifying
deforms the two-dimensional distance field.

105. The method of claim 98 wherein a plurality of two
dimensional distance fields representing a plurality of two-
dimensional character glyphs includes a single set of
attributes.

106. The method of claim 105 wherein an attribute in the
single set of attributes is a baseline of the two-dimensional
character glyphs determined from the two-dimensional dis-
tance fields.

107. The method of claim 105 wherein an attribute in the
single set of attributes is a cap-height of the two-dimensional
character glyphs determined from the two-dimensional dis-
tance fields.

108. The method of claim 105 wherein an attribute in the
single set of attributes is an x-height of the two-dimensional
character glyphs determined from the two-dimensional dis-
tance fields.

109. The method of claim 98 wherein an attribute in the
set of attributes is an edge of the two-dimensional glyph.

110. The method of claim 109 wherein the edge is
determined from the two-dimensional distance field.

111. The method of claim 98 wherein an attribute in the
set of attributes is a cap-height of the two-dimensional
glyph.

112. The method of claim 111 wherein the cap-height is
determined from the two-dimensional distance field.

113. The method of claim 98 wherein an attribute in the
set of attributes is an x-height of the two-dimensional glyph.

10

15

20

25

30

35

40

45

50

55

60

65

24

114. The method of claim 113 wherein the x-height is
determined from the two-dimensional distance field.

115. The method of claim 98 wherein an attribute in the
set of attributes is a size of the component of the pixel.

116. The method of claim 98 wherein an attribute in the
set of attributes is a characteristic of the component of the
pixel.

117. The method of claim 98 wherein an attribute in the
set of attributes is a position of the component of the pixel.

118. The method of claim 117 wherein the modifying
aligns the two-dimensional distance field to the position of
the component of the pixel.

119. The method of claim 118 wherein the mapping is an
N-dimensional function relating the distance to the anti-
aliased intensity, the N-dimensional function is an attribute
in the set of attributes, and the N-dimensional function
determines the alignment.

120. The method claim 118 wherein the mapping is an
N-dimensional lookup table relating the distance to the
antialiased intensity, the N-dimensional lookup table is an
attribute in the set of attributes, and the N-dimensional
lookup table determines the alignment.

121. The method of claim 98 wherein an attribute in the
set of attributes is a position of the pixel.

122. The method of claim 98 wherein the modifying
aligns the two-dimensional distance field to a pixel grid.

123. The method of claim 122 wherein the mapping is an
N-dimensional function relating the distance to the anti-
aliased intensity, the N-dimensional function is an attribute
in the set of attributes, and the N-dimensional function
determines the alignment.

124. The method of claim 122 wherein the mapping is an
N-dimensional lookup table relating the distance to the
antialiased intensity, the N-dimensional lookup table is an
attribute in the set of attributes, and the N-dimensional
lookup table determines the alignment.

125. The method of claim 98 wherein the mapping is an
N-dimensional function relating the distance to the anti-
aliased intensity and the N-dimensional function is an
attribute in the set of attributes.

126. The method of claim 98 wherein the mapping is an
N-dimensional lookup table relating the distance to the
antialiased intensity and the N-dimensional lookup table is
an attribute in the set of attributes.

127. An apparatus for antialiasing a region of a two-
dimensional distance field representing an object, wherein
the two-dimensional distance field is partitioned into cells,
each cell including a method for reconstructing the two-
dimensional distance field within the cell, comprising:

a means for identifying a set of cells of a two-dimensional
distance field representing an object, the set of cells
associated with a region of the two-dimensional dis-
tance field to be rendered,

a means for locating a set of pixels associated with the
region;

a means for specifying a set of components for each pixel
in the set of pixels;

a means for determining an antialiased intensity for each
component of each pixel in the set of pixels, the
determining further comprising:

a means for determining a distance for the component
of the pixel from the set of cells; and

a means for mapping the distance to the antialiased
intensity of the component of the pixel; and

a display device for displaying the antialiased intensity of
the component of the pixel.

US 6,982,724 B2

25 26
128. The apparatus of claim 127 wherein the display 132. The apparatus of claim 127 wherein the display
device is a CRT monitor. device is a part of a gaming device.
129. The apparatus of claim 127 wherein the display 133. The apparatus of claim 127 wherein the display
device is an LCD monitor. device is a part of an appliance.
130. The apparatus of claim 127 wherein the display 5 134. The apparatus of claim 127 wherein the display
device is a part of a personal digital assistant. device is a part of an electronic device.

131. The apparatus of claim 127 wherein the display
device is a part of a communication device. I T S

	Bibliography
	Abstract
	Drawings
	Description
	Claims

